Power-MF:从无创胎儿心电图记录中稳健检测胎儿 QRS。

IF 2.3 4区 医学 Q3 BIOPHYSICS
Katharina M Jaeger, Michael Nissen, Simone Rahm, Adriana Titzmann, Peter A Fasching, Janina Beilner, Bjoern M Eskofier, Heike Leutheuser
{"title":"Power-MF:从无创胎儿心电图记录中稳健检测胎儿 QRS。","authors":"Katharina M Jaeger, Michael Nissen, Simone Rahm, Adriana Titzmann, Peter A Fasching, Janina Beilner, Bjoern M Eskofier, Heike Leutheuser","doi":"10.1088/1361-6579/ad4952","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Perinatal asphyxia poses a significant risk to neonatal health, necessitating accurate fetal heart rate monitoring for effective detection and management. The current gold standard, cardiotocography, has inherent limitations, highlighting the need for alternative approaches. The emerging technology of non-invasive fetal electrocardiography shows promise as a new sensing technology for fetal cardiac activity, offering potential advancements in the detection and management of perinatal asphyxia. Although algorithms for fetal QRS detection have been developed in the past, only a few of them demonstrate accurate performance in the presence of noise and artifacts.<i>Approach.</i>In this work, we propose<i>Power-MF</i>, a new algorithm for fetal QRS detection combining power spectral density and matched filter techniques. We benchmark<i>Power-MF</i>against three open-source algorithms on two recently published datasets (Abdominal and Direct Fetal ECG Database: ADFECG, subsets B1 Pregnancy and B2 Labour; Non-invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research: NInFEA).<i>Main results.</i>Our results show that<i>Power-MF</i>outperforms state-of-the-art algorithms on ADFECG (B1 Pregnancy: 99.5% ± 0.5% F1-score, B2 Labour: 98.0% ± 3.0% F1-score) and on NInFEA in three of six electrode configurations by being more robust against noise.<i>Significance.</i>Through this work, we contribute to improving the accuracy and reliability of fetal cardiac monitoring, an essential step toward early detection of perinatal asphyxia with the long-term goal of reducing costs and making prenatal care more accessible.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power-MF: robust fetal QRS detection from non-invasive fetal electrocardiogram recordings.\",\"authors\":\"Katharina M Jaeger, Michael Nissen, Simone Rahm, Adriana Titzmann, Peter A Fasching, Janina Beilner, Bjoern M Eskofier, Heike Leutheuser\",\"doi\":\"10.1088/1361-6579/ad4952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Perinatal asphyxia poses a significant risk to neonatal health, necessitating accurate fetal heart rate monitoring for effective detection and management. The current gold standard, cardiotocography, has inherent limitations, highlighting the need for alternative approaches. The emerging technology of non-invasive fetal electrocardiography shows promise as a new sensing technology for fetal cardiac activity, offering potential advancements in the detection and management of perinatal asphyxia. Although algorithms for fetal QRS detection have been developed in the past, only a few of them demonstrate accurate performance in the presence of noise and artifacts.<i>Approach.</i>In this work, we propose<i>Power-MF</i>, a new algorithm for fetal QRS detection combining power spectral density and matched filter techniques. We benchmark<i>Power-MF</i>against three open-source algorithms on two recently published datasets (Abdominal and Direct Fetal ECG Database: ADFECG, subsets B1 Pregnancy and B2 Labour; Non-invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research: NInFEA).<i>Main results.</i>Our results show that<i>Power-MF</i>outperforms state-of-the-art algorithms on ADFECG (B1 Pregnancy: 99.5% ± 0.5% F1-score, B2 Labour: 98.0% ± 3.0% F1-score) and on NInFEA in three of six electrode configurations by being more robust against noise.<i>Significance.</i>Through this work, we contribute to improving the accuracy and reliability of fetal cardiac monitoring, an essential step toward early detection of perinatal asphyxia with the long-term goal of reducing costs and making prenatal care more accessible.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad4952\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad4952","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:围产期窒息对新生儿健康构成重大风险,需要准确的胎儿心率监测来进行有效的检测和管理。目前的金标准--胎心造影有其固有的局限性,因此需要替代方法。无创胎儿心电图这一新兴技术有望成为胎儿心脏活动的新传感技术,为围产期窒息的检测和管理带来潜在的进步。虽然过去已经开发出了胎儿 QRS 检测算法,但只有少数算法在存在噪声和伪影的情况下表现出了准确的性能:在这项工作中,我们提出了 Power-MF,这是一种结合了功率谱密度和匹配滤波技术的胎儿 QRS 检测新算法。ADFECG,子集 B1 妊娠和 B2 分娩;无创多模态胎儿心电图-多普勒产前心脏病学研究数据集:主要结果:主要结果:我们的研究结果表明,Power-MF 在 ADFECG(B1 妊娠期:99.5 % ± 0.5 % F1-score,B2 分娩期:98.0 % ± 3.0 % F1-score)和 NInFEA(六种电极配置中的三种)上的表现优于最先进的算法,因为它对噪声具有更强的鲁棒性:通过这项工作,我们为提高胎儿心脏监护的准确性和可靠性做出了贡献,这是早期检测围产期窒息的重要一步,其长远目标是降低成本,使产前保健更容易获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power-MF: robust fetal QRS detection from non-invasive fetal electrocardiogram recordings.

Objective.Perinatal asphyxia poses a significant risk to neonatal health, necessitating accurate fetal heart rate monitoring for effective detection and management. The current gold standard, cardiotocography, has inherent limitations, highlighting the need for alternative approaches. The emerging technology of non-invasive fetal electrocardiography shows promise as a new sensing technology for fetal cardiac activity, offering potential advancements in the detection and management of perinatal asphyxia. Although algorithms for fetal QRS detection have been developed in the past, only a few of them demonstrate accurate performance in the presence of noise and artifacts.Approach.In this work, we proposePower-MF, a new algorithm for fetal QRS detection combining power spectral density and matched filter techniques. We benchmarkPower-MFagainst three open-source algorithms on two recently published datasets (Abdominal and Direct Fetal ECG Database: ADFECG, subsets B1 Pregnancy and B2 Labour; Non-invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research: NInFEA).Main results.Our results show thatPower-MFoutperforms state-of-the-art algorithms on ADFECG (B1 Pregnancy: 99.5% ± 0.5% F1-score, B2 Labour: 98.0% ± 3.0% F1-score) and on NInFEA in three of six electrode configurations by being more robust against noise.Significance.Through this work, we contribute to improving the accuracy and reliability of fetal cardiac monitoring, an essential step toward early detection of perinatal asphyxia with the long-term goal of reducing costs and making prenatal care more accessible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信