Annalisa Contursi , Stefania Tacconelli , Sara Di Berardino , Alessandra De Michele , Paola Patrignani
{"title":"血小板和细胞外囊泡通过细胞交叉对话和二十碳烷生物合成促进疾病的发生。","authors":"Annalisa Contursi , Stefania Tacconelli , Sara Di Berardino , Alessandra De Michele , Paola Patrignani","doi":"10.1016/j.prostaglandins.2024.106848","DOIUrl":null,"url":null,"abstract":"<div><p>New insights have been gained on the role of platelets beyond thrombosis. Platelets can accumulate in damaged and inflamed tissues, acting as a sentinel to detect and repair tissue damage. However, by releasing several soluble factors, including thromboxane A<sub>2</sub> (TXA<sub>2</sub>) and 12-hydroxyeicosatetraenoic acid, and extracellular vesicles (EVs), platelets can activate vascular cells, stromal, such as fibroblasts, immune cells, and cancer cells, leading to atherosclerosis, vascular restenosis, tissue fibrosis, and tumor metastasis. Platelet-derived extracellular vesicles (PEVs) are released when platelets are activated and can transfer their cargo to other cell types, thus contributing to the development of diseases. Inhibitors of the internalization of PEVs can potentially represent novel therapeutic tools. Both platelets and PEVs contain a significant number of different types of molecules, and their omics assessment and integration with clinical data using computational approaches have the potential to detect early disease development and monitor drug treatments.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"173 ","pages":"Article 106848"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S109888232400042X/pdfft?md5=4e3e0cad97e751a2ff6bfb5f9a8809c7&pid=1-s2.0-S109888232400042X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Platelets and extracellular vesicles in disease promotion via cellular cross-talk and eicosanoid biosynthesis\",\"authors\":\"Annalisa Contursi , Stefania Tacconelli , Sara Di Berardino , Alessandra De Michele , Paola Patrignani\",\"doi\":\"10.1016/j.prostaglandins.2024.106848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>New insights have been gained on the role of platelets beyond thrombosis. Platelets can accumulate in damaged and inflamed tissues, acting as a sentinel to detect and repair tissue damage. However, by releasing several soluble factors, including thromboxane A<sub>2</sub> (TXA<sub>2</sub>) and 12-hydroxyeicosatetraenoic acid, and extracellular vesicles (EVs), platelets can activate vascular cells, stromal, such as fibroblasts, immune cells, and cancer cells, leading to atherosclerosis, vascular restenosis, tissue fibrosis, and tumor metastasis. Platelet-derived extracellular vesicles (PEVs) are released when platelets are activated and can transfer their cargo to other cell types, thus contributing to the development of diseases. Inhibitors of the internalization of PEVs can potentially represent novel therapeutic tools. Both platelets and PEVs contain a significant number of different types of molecules, and their omics assessment and integration with clinical data using computational approaches have the potential to detect early disease development and monitor drug treatments.</p></div>\",\"PeriodicalId\":21161,\"journal\":{\"name\":\"Prostaglandins & other lipid mediators\",\"volume\":\"173 \",\"pages\":\"Article 106848\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S109888232400042X/pdfft?md5=4e3e0cad97e751a2ff6bfb5f9a8809c7&pid=1-s2.0-S109888232400042X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostaglandins & other lipid mediators\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S109888232400042X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins & other lipid mediators","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109888232400042X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Platelets and extracellular vesicles in disease promotion via cellular cross-talk and eicosanoid biosynthesis
New insights have been gained on the role of platelets beyond thrombosis. Platelets can accumulate in damaged and inflamed tissues, acting as a sentinel to detect and repair tissue damage. However, by releasing several soluble factors, including thromboxane A2 (TXA2) and 12-hydroxyeicosatetraenoic acid, and extracellular vesicles (EVs), platelets can activate vascular cells, stromal, such as fibroblasts, immune cells, and cancer cells, leading to atherosclerosis, vascular restenosis, tissue fibrosis, and tumor metastasis. Platelet-derived extracellular vesicles (PEVs) are released when platelets are activated and can transfer their cargo to other cell types, thus contributing to the development of diseases. Inhibitors of the internalization of PEVs can potentially represent novel therapeutic tools. Both platelets and PEVs contain a significant number of different types of molecules, and their omics assessment and integration with clinical data using computational approaches have the potential to detect early disease development and monitor drug treatments.
期刊介绍:
Prostaglandins & Other Lipid Mediators is the original and foremost journal dealing with prostaglandins and related lipid mediator substances. It includes basic and clinical studies related to the pharmacology, physiology, pathology and biochemistry of lipid mediators.
Prostaglandins & Other Lipid Mediators invites reports of original research, mini-reviews, reviews, and methods articles in the basic and clinical aspects of all areas of lipid mediator research: cell biology, developmental biology, genetics, molecular biology, chemistry, biochemistry, physiology, pharmacology, endocrinology, biology, the medical sciences, and epidemiology.
Prostaglandins & Other Lipid Mediators also accepts proposals for special issue topics. The Editors will make every effort to advise authors of the decision on the submitted manuscript within 3-4 weeks of receipt.