Santiago Demajo, Joan E Ramis-Zaldivar, Ferran Muiños, Miguel L Grau, Maria Andrianova, Núria López-Bigas, Abel González-Pérez
{"title":"通过硅饱和突变鉴定克隆性造血驱动突变","authors":"Santiago Demajo, Joan E Ramis-Zaldivar, Ferran Muiños, Miguel L Grau, Maria Andrianova, Núria López-Bigas, Abel González-Pérez","doi":"10.1158/2159-8290.CD-23-1416","DOIUrl":null,"url":null,"abstract":"<p><p>Clonal hematopoiesis (CH) is a phenomenon of clonal expansion of hematopoietic stem cells driven by somatic mutations affecting certain genes. Recently, CH has been linked to the development of hematologic malignancies, cardiovascular diseases, and other conditions. Although the most frequently mutated CH driver genes have been identified, a systematic landscape of the mutations capable of initiating this phenomenon is still lacking. In this study, we trained machine learning models for 12 of the most recurrent CH genes to identify their driver mutations. These models outperform expert-curated rules based on prior knowledge of the function of these genes. Moreover, their application to identify CH driver mutations across almost half a million donors of the UK Biobank reproduces known associations between CH driver mutations and age, and the prevalence of several diseases and conditions. We thus propose that these models support the accurate identification of CH across healthy individuals. Significance: We developed and validated gene-specific machine learning models to identify CH driver mutations, showing their advantage with respect to expert-curated rules. These models can support the identification and clinical interpretation of CH mutations in newly sequenced individuals. See related commentary by Arends and Jaiswal, p. 1581.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"1717-1731"},"PeriodicalIF":29.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372364/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of Clonal Hematopoiesis Driver Mutations through In Silico Saturation Mutagenesis.\",\"authors\":\"Santiago Demajo, Joan E Ramis-Zaldivar, Ferran Muiños, Miguel L Grau, Maria Andrianova, Núria López-Bigas, Abel González-Pérez\",\"doi\":\"10.1158/2159-8290.CD-23-1416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clonal hematopoiesis (CH) is a phenomenon of clonal expansion of hematopoietic stem cells driven by somatic mutations affecting certain genes. Recently, CH has been linked to the development of hematologic malignancies, cardiovascular diseases, and other conditions. Although the most frequently mutated CH driver genes have been identified, a systematic landscape of the mutations capable of initiating this phenomenon is still lacking. In this study, we trained machine learning models for 12 of the most recurrent CH genes to identify their driver mutations. These models outperform expert-curated rules based on prior knowledge of the function of these genes. Moreover, their application to identify CH driver mutations across almost half a million donors of the UK Biobank reproduces known associations between CH driver mutations and age, and the prevalence of several diseases and conditions. We thus propose that these models support the accurate identification of CH across healthy individuals. Significance: We developed and validated gene-specific machine learning models to identify CH driver mutations, showing their advantage with respect to expert-curated rules. These models can support the identification and clinical interpretation of CH mutations in newly sequenced individuals. See related commentary by Arends and Jaiswal, p. 1581.</p>\",\"PeriodicalId\":9430,\"journal\":{\"name\":\"Cancer discovery\",\"volume\":\" \",\"pages\":\"1717-1731\"},\"PeriodicalIF\":29.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372364/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2159-8290.CD-23-1416\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-23-1416","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Identification of Clonal Hematopoiesis Driver Mutations through In Silico Saturation Mutagenesis.
Clonal hematopoiesis (CH) is a phenomenon of clonal expansion of hematopoietic stem cells driven by somatic mutations affecting certain genes. Recently, CH has been linked to the development of hematologic malignancies, cardiovascular diseases, and other conditions. Although the most frequently mutated CH driver genes have been identified, a systematic landscape of the mutations capable of initiating this phenomenon is still lacking. In this study, we trained machine learning models for 12 of the most recurrent CH genes to identify their driver mutations. These models outperform expert-curated rules based on prior knowledge of the function of these genes. Moreover, their application to identify CH driver mutations across almost half a million donors of the UK Biobank reproduces known associations between CH driver mutations and age, and the prevalence of several diseases and conditions. We thus propose that these models support the accurate identification of CH across healthy individuals. Significance: We developed and validated gene-specific machine learning models to identify CH driver mutations, showing their advantage with respect to expert-curated rules. These models can support the identification and clinical interpretation of CH mutations in newly sequenced individuals. See related commentary by Arends and Jaiswal, p. 1581.
期刊介绍:
Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.