Athanasios Kafkaletos, Michael Mix, Ilias Sachpazidis, Montserrat Carles, Alexander Rühle, Juri Ruf, Anca L Grosu, Nils H Nicolay, Dimos Baltas
{"title":"部分体积效应对[18F]FMISO PET/CT 估算缺氧肿瘤体积的意义。","authors":"Athanasios Kafkaletos, Michael Mix, Ilias Sachpazidis, Montserrat Carles, Alexander Rühle, Juri Ruf, Anca L Grosu, Nils H Nicolay, Dimos Baltas","doi":"10.1186/s40658-024-00643-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The purpose of this study was to evaluate how a retrospective correction of the partial volume effect (PVE) in [<sup>18</sup>F]fluoromisonidazole (FMISO) PET imaging, affects the hypoxia discoverability within a gross tumour volume (GTV). This method is based on recovery coefficients (RC) and is tailored for low-contrast tracers such as FMISO. The first stage was the generation of the scanner's RC curves, using spheres with diameters from 10 to 37 mm, and the same homogeneous activity concentration, positioned in lower activity concentration background. Six sphere-to-background contrast ratios were used, from 10.0:1, down to 2.0:1, in order to investigate the dependence of RC on both the volume and the contrast ratio. The second stage was to validate the recovery-coefficient correction method in a more complex environment of non-spherical lesions of different volumes and inhomogeneous activity concentration. Finally, we applied the correction method to a clinical dataset derived from a prospective imaging trial (DRKS00003830): forty nine head and neck squamous cell carcinoma (HNSCC) cases who had undergone FMISO PET/CT scanning for the quantification of tumour hypoxia before (W0), 2 weeks (W2) and 5 weeks (W5) after the beginning of radiotherapy. Here, PVE was found to cause an underestimation of the activity in small volumes with high FMISO signal.</p><p><strong>Results: </strong>The application of the proposed correction method resulted in a statistically significant increase of both the hypoxic subvolume (171% at W0, 691% at W2 and 4.60 × 10<sup>3</sup>% at W5 with p < 0.001) and the FMISO standardised uptake value (SUV) (27% at W0, 21% at W2 and by 25% at W5 with p < 0.001) within the primary GTV.</p><p><strong>Conclusions: </strong>The proposed PVE-correction method resulted in a statistically significant increase of the hypoxic fraction (HF) with p < 0.001 and demonstrated results in better agreement with published HF data for HNSCC. To summarise, the proposed RC-based correction method can be a useful tool for a retrospective compensation against PVE.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"43"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082115/pdf/","citationCount":"0","resultStr":"{\"title\":\"The significance of partial volume effect on the estimation of hypoxic tumour volume with [<sup>18</sup>F]FMISO PET/CT.\",\"authors\":\"Athanasios Kafkaletos, Michael Mix, Ilias Sachpazidis, Montserrat Carles, Alexander Rühle, Juri Ruf, Anca L Grosu, Nils H Nicolay, Dimos Baltas\",\"doi\":\"10.1186/s40658-024-00643-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The purpose of this study was to evaluate how a retrospective correction of the partial volume effect (PVE) in [<sup>18</sup>F]fluoromisonidazole (FMISO) PET imaging, affects the hypoxia discoverability within a gross tumour volume (GTV). This method is based on recovery coefficients (RC) and is tailored for low-contrast tracers such as FMISO. The first stage was the generation of the scanner's RC curves, using spheres with diameters from 10 to 37 mm, and the same homogeneous activity concentration, positioned in lower activity concentration background. Six sphere-to-background contrast ratios were used, from 10.0:1, down to 2.0:1, in order to investigate the dependence of RC on both the volume and the contrast ratio. The second stage was to validate the recovery-coefficient correction method in a more complex environment of non-spherical lesions of different volumes and inhomogeneous activity concentration. Finally, we applied the correction method to a clinical dataset derived from a prospective imaging trial (DRKS00003830): forty nine head and neck squamous cell carcinoma (HNSCC) cases who had undergone FMISO PET/CT scanning for the quantification of tumour hypoxia before (W0), 2 weeks (W2) and 5 weeks (W5) after the beginning of radiotherapy. Here, PVE was found to cause an underestimation of the activity in small volumes with high FMISO signal.</p><p><strong>Results: </strong>The application of the proposed correction method resulted in a statistically significant increase of both the hypoxic subvolume (171% at W0, 691% at W2 and 4.60 × 10<sup>3</sup>% at W5 with p < 0.001) and the FMISO standardised uptake value (SUV) (27% at W0, 21% at W2 and by 25% at W5 with p < 0.001) within the primary GTV.</p><p><strong>Conclusions: </strong>The proposed PVE-correction method resulted in a statistically significant increase of the hypoxic fraction (HF) with p < 0.001 and demonstrated results in better agreement with published HF data for HNSCC. To summarise, the proposed RC-based correction method can be a useful tool for a retrospective compensation against PVE.</p>\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"11 1\",\"pages\":\"43\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082115/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-024-00643-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00643-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
The significance of partial volume effect on the estimation of hypoxic tumour volume with [18F]FMISO PET/CT.
Background: The purpose of this study was to evaluate how a retrospective correction of the partial volume effect (PVE) in [18F]fluoromisonidazole (FMISO) PET imaging, affects the hypoxia discoverability within a gross tumour volume (GTV). This method is based on recovery coefficients (RC) and is tailored for low-contrast tracers such as FMISO. The first stage was the generation of the scanner's RC curves, using spheres with diameters from 10 to 37 mm, and the same homogeneous activity concentration, positioned in lower activity concentration background. Six sphere-to-background contrast ratios were used, from 10.0:1, down to 2.0:1, in order to investigate the dependence of RC on both the volume and the contrast ratio. The second stage was to validate the recovery-coefficient correction method in a more complex environment of non-spherical lesions of different volumes and inhomogeneous activity concentration. Finally, we applied the correction method to a clinical dataset derived from a prospective imaging trial (DRKS00003830): forty nine head and neck squamous cell carcinoma (HNSCC) cases who had undergone FMISO PET/CT scanning for the quantification of tumour hypoxia before (W0), 2 weeks (W2) and 5 weeks (W5) after the beginning of radiotherapy. Here, PVE was found to cause an underestimation of the activity in small volumes with high FMISO signal.
Results: The application of the proposed correction method resulted in a statistically significant increase of both the hypoxic subvolume (171% at W0, 691% at W2 and 4.60 × 103% at W5 with p < 0.001) and the FMISO standardised uptake value (SUV) (27% at W0, 21% at W2 and by 25% at W5 with p < 0.001) within the primary GTV.
Conclusions: The proposed PVE-correction method resulted in a statistically significant increase of the hypoxic fraction (HF) with p < 0.001 and demonstrated results in better agreement with published HF data for HNSCC. To summarise, the proposed RC-based correction method can be a useful tool for a retrospective compensation against PVE.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.