Hiba Messaoudi, Göknur Yaşa Atmaca, Ayşegül Türkkol, Mehmet Dinçer Bilgin, Ali Erdoğmuş
{"title":"通过声光化学研究和对前列腺癌细胞的体外活性监测新型希夫碱取代硅酞菁的单线态氧生成。","authors":"Hiba Messaoudi, Göknur Yaşa Atmaca, Ayşegül Türkkol, Mehmet Dinçer Bilgin, Ali Erdoğmuş","doi":"10.1007/s00775-024-02055-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (<b>Φ</b><sub><b>∆</b></sub>) were determined as 0.43 for <b>Si1a</b>, 0.94 for <b>Q-Si1a</b>, 0.58 for <b>S-Si1a</b>, and 0.49 for <b>B-Sia1</b>. In sono-photochemical studies, the Φ<sub>∆</sub> values were reached to 0.67 for <b>Si1a</b>, 1.06 for <b>Q-Si1a</b>, 0.65 for <b>S-Si1a</b>, and 0.67 for <b>B-Sia1</b>. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"Journal of Biological Inorganic Chemistry","volume":"29 3","pages":"303 - 314"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111517/pdf/","citationCount":"0","resultStr":"{\"title\":\"Monitoring of singlet oxygen generation of a novel Schiff-base substituted silicon phthalocyanines by sono-photochemical studies and in vitro activities on prostate cancer cell\",\"authors\":\"Hiba Messaoudi, Göknur Yaşa Atmaca, Ayşegül Türkkol, Mehmet Dinçer Bilgin, Ali Erdoğmuş\",\"doi\":\"10.1007/s00775-024-02055-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (<b>Φ</b><sub><b>∆</b></sub>) were determined as 0.43 for <b>Si1a</b>, 0.94 for <b>Q-Si1a</b>, 0.58 for <b>S-Si1a</b>, and 0.49 for <b>B-Sia1</b>. In sono-photochemical studies, the Φ<sub>∆</sub> values were reached to 0.67 for <b>Si1a</b>, 1.06 for <b>Q-Si1a</b>, 0.65 for <b>S-Si1a</b>, and 0.67 for <b>B-Sia1</b>. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":603,\"journal\":{\"name\":\"Journal of Biological Inorganic Chemistry\",\"volume\":\"29 3\",\"pages\":\"303 - 314\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111517/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Inorganic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00775-024-02055-z\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s00775-024-02055-z","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Monitoring of singlet oxygen generation of a novel Schiff-base substituted silicon phthalocyanines by sono-photochemical studies and in vitro activities on prostate cancer cell
This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.
期刊介绍:
Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.