论随机分数微分方程伽勒金方法的收敛性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marc Jornet
{"title":"论随机分数微分方程伽勒金方法的收敛性","authors":"Marc Jornet","doi":"10.1007/s13540-024-00287-z","DOIUrl":null,"url":null,"abstract":"<p>In the context of forward uncertainty quantification, we investigate the convergence of the Galerkin projections for random fractional differential equations. The governing system is formed by a finite set of independent input random parameters (a germ) and by a fractional derivative in the Caputo sense. Input uncertainty arises from biased measurements, and a fractional derivative, defined by a convolution, takes past history into account. While numerical experiments on the gPC-based Galerkin method are already available in the literature for random ordinary, partial and fractional differential equations, a theoretical analysis of mean-square convergence is still lacking for the fractional case. The aim of this contribution is to fill this gap, by establishing new inequalities and results and by raising new open problems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the convergence of the Galerkin method for random fractional differential equations\",\"authors\":\"Marc Jornet\",\"doi\":\"10.1007/s13540-024-00287-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the context of forward uncertainty quantification, we investigate the convergence of the Galerkin projections for random fractional differential equations. The governing system is formed by a finite set of independent input random parameters (a germ) and by a fractional derivative in the Caputo sense. Input uncertainty arises from biased measurements, and a fractional derivative, defined by a convolution, takes past history into account. While numerical experiments on the gPC-based Galerkin method are already available in the literature for random ordinary, partial and fractional differential equations, a theoretical analysis of mean-square convergence is still lacking for the fractional case. The aim of this contribution is to fill this gap, by establishing new inequalities and results and by raising new open problems.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00287-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00287-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在前向不确定性量化的背景下,我们研究了随机分数微分方程的 Galerkin 投影的收敛性。支配系统由一组有限的独立输入随机参数(胚芽)和一个卡普托意义上的分数导数构成。输入的不确定性来自有偏差的测量,而由卷积定义的分数导数则考虑了过去的历史。虽然已有文献对基于 gPC 的 Galerkin 方法进行了随机常微分方程、偏微分方程和分数微分方程的数值实验,但对分数情况仍缺乏均方收敛性的理论分析。本文旨在通过建立新的不等式和结果以及提出新的开放性问题来填补这一空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the convergence of the Galerkin method for random fractional differential equations

On the convergence of the Galerkin method for random fractional differential equations

In the context of forward uncertainty quantification, we investigate the convergence of the Galerkin projections for random fractional differential equations. The governing system is formed by a finite set of independent input random parameters (a germ) and by a fractional derivative in the Caputo sense. Input uncertainty arises from biased measurements, and a fractional derivative, defined by a convolution, takes past history into account. While numerical experiments on the gPC-based Galerkin method are already available in the literature for random ordinary, partial and fractional differential equations, a theoretical analysis of mean-square convergence is still lacking for the fractional case. The aim of this contribution is to fill this gap, by establishing new inequalities and results and by raising new open problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信