{"title":"论随机分数微分方程伽勒金方法的收敛性","authors":"Marc Jornet","doi":"10.1007/s13540-024-00287-z","DOIUrl":null,"url":null,"abstract":"<p>In the context of forward uncertainty quantification, we investigate the convergence of the Galerkin projections for random fractional differential equations. The governing system is formed by a finite set of independent input random parameters (a germ) and by a fractional derivative in the Caputo sense. Input uncertainty arises from biased measurements, and a fractional derivative, defined by a convolution, takes past history into account. While numerical experiments on the gPC-based Galerkin method are already available in the literature for random ordinary, partial and fractional differential equations, a theoretical analysis of mean-square convergence is still lacking for the fractional case. The aim of this contribution is to fill this gap, by establishing new inequalities and results and by raising new open problems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the convergence of the Galerkin method for random fractional differential equations\",\"authors\":\"Marc Jornet\",\"doi\":\"10.1007/s13540-024-00287-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the context of forward uncertainty quantification, we investigate the convergence of the Galerkin projections for random fractional differential equations. The governing system is formed by a finite set of independent input random parameters (a germ) and by a fractional derivative in the Caputo sense. Input uncertainty arises from biased measurements, and a fractional derivative, defined by a convolution, takes past history into account. While numerical experiments on the gPC-based Galerkin method are already available in the literature for random ordinary, partial and fractional differential equations, a theoretical analysis of mean-square convergence is still lacking for the fractional case. The aim of this contribution is to fill this gap, by establishing new inequalities and results and by raising new open problems.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00287-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00287-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
On the convergence of the Galerkin method for random fractional differential equations
In the context of forward uncertainty quantification, we investigate the convergence of the Galerkin projections for random fractional differential equations. The governing system is formed by a finite set of independent input random parameters (a germ) and by a fractional derivative in the Caputo sense. Input uncertainty arises from biased measurements, and a fractional derivative, defined by a convolution, takes past history into account. While numerical experiments on the gPC-based Galerkin method are already available in the literature for random ordinary, partial and fractional differential equations, a theoretical analysis of mean-square convergence is still lacking for the fractional case. The aim of this contribution is to fill this gap, by establishing new inequalities and results and by raising new open problems.