利用多尺度激光雷达确定非洲森林大象足迹的树冠结构变化

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY
Jenna M. Keany, Patrick Burns, Andrew J. Abraham, Patrick Jantz, Loic Makaga, Sassan Saatchi, Fiona Maisels, Katharine Abernethy, Christopher E. Doughty
{"title":"利用多尺度激光雷达确定非洲森林大象足迹的树冠结构变化","authors":"Jenna M. Keany, Patrick Burns, Andrew J. Abraham, Patrick Jantz, Loic Makaga, Sassan Saatchi, Fiona Maisels, Katharine Abernethy, Christopher E. Doughty","doi":"10.1002/rse2.395","DOIUrl":null,"url":null,"abstract":"Recently classified as a unique species by the IUCN, African forest elephants (<jats:italic>Loxodonta cyclotis</jats:italic>) are critically endangered due to severe poaching. With limited knowledge about their ecological role due to the dense tropical forests they inhabit in central Africa, it is unclear how the Afrotropics are influenced by elephants. Although their role as seed dispersers is well known, they may also drive large‐scale processes that determine forest structure through the creation of elephant trails and browsing the understory, allowing larger, carbon‐dense trees to succeed. Multiple scales of lidar were collected by NASA in Lopé National Park, Gabon from 2015 to 2022. Utilizing two airborne lidar datasets in an African forest elephant stronghold, detailed canopy structural information was used in conjunction with elephant trail data to determine how forest structure varies on and off trails. Forest along elephant trails displayed different structural characteristics than forested areas off trails, with lower canopy height, canopy cover, and different vertical distribution of plant density. Less plant area density was found on trails at 1 m in height, while more vegetation was found at 12 m, compared to off trail locations. Trails in forest areas with previous logging history had lower plant area in the top of the canopy. Forest elephants can be considered as “logging light” ecosystem engineers, affecting canopy structure through browsing and movement. Both airborne lidar scales were able to capture elephant impact along trails, with the high‐resolution discrete return lidar performing higher than waveform lidar.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"8 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using multiscale lidar to determine variation in canopy structure from African forest elephant trails\",\"authors\":\"Jenna M. Keany, Patrick Burns, Andrew J. Abraham, Patrick Jantz, Loic Makaga, Sassan Saatchi, Fiona Maisels, Katharine Abernethy, Christopher E. Doughty\",\"doi\":\"10.1002/rse2.395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently classified as a unique species by the IUCN, African forest elephants (<jats:italic>Loxodonta cyclotis</jats:italic>) are critically endangered due to severe poaching. With limited knowledge about their ecological role due to the dense tropical forests they inhabit in central Africa, it is unclear how the Afrotropics are influenced by elephants. Although their role as seed dispersers is well known, they may also drive large‐scale processes that determine forest structure through the creation of elephant trails and browsing the understory, allowing larger, carbon‐dense trees to succeed. Multiple scales of lidar were collected by NASA in Lopé National Park, Gabon from 2015 to 2022. Utilizing two airborne lidar datasets in an African forest elephant stronghold, detailed canopy structural information was used in conjunction with elephant trail data to determine how forest structure varies on and off trails. Forest along elephant trails displayed different structural characteristics than forested areas off trails, with lower canopy height, canopy cover, and different vertical distribution of plant density. Less plant area density was found on trails at 1 m in height, while more vegetation was found at 12 m, compared to off trail locations. Trails in forest areas with previous logging history had lower plant area in the top of the canopy. Forest elephants can be considered as “logging light” ecosystem engineers, affecting canopy structure through browsing and movement. Both airborne lidar scales were able to capture elephant impact along trails, with the high‐resolution discrete return lidar performing higher than waveform lidar.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.395\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.395","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

非洲森林象(Loxodonta cyclotis)最近被世界自然保护联盟(IUCN)列为一种独特的物种,由于偷猎现象严重,非洲森林象已濒临灭绝。由于大象栖息在非洲中部茂密的热带森林中,人们对它们的生态作用了解有限,因此尚不清楚非洲热带地区如何受到大象的影响。虽然大象作为种子传播者的作用众所周知,但它们还可能通过开辟象道和啃食林下植物来推动决定森林结构的大规模进程,从而使碳密度更大的树木得以成功生长。从2015年到2022年,NASA在加蓬洛佩国家公园收集了多种尺度的激光雷达。利用非洲森林大象据点的两个机载激光雷达数据集,结合大象足迹数据使用了详细的树冠结构信息,以确定足迹上和足迹外的森林结构如何变化。大象踪迹沿线的森林显示出与踪迹外森林区域不同的结构特征,树冠高度和树冠覆盖率较低,植物密度的垂直分布也不同。与小径以外的地点相比,小径上 1 米高处的植物密度较低,而 12 米高处的植被较多。在有伐木历史的林区的小径上,树冠顶部的植物面积较低。森林大象可被视为 "伐木之光 "生态系统工程师,通过啃食和移动影响树冠结构。两种机载激光雷达尺度都能捕捉到大象对小径的影响,其中高分辨率离散回波激光雷达的性能高于波形激光雷达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using multiscale lidar to determine variation in canopy structure from African forest elephant trails
Recently classified as a unique species by the IUCN, African forest elephants (Loxodonta cyclotis) are critically endangered due to severe poaching. With limited knowledge about their ecological role due to the dense tropical forests they inhabit in central Africa, it is unclear how the Afrotropics are influenced by elephants. Although their role as seed dispersers is well known, they may also drive large‐scale processes that determine forest structure through the creation of elephant trails and browsing the understory, allowing larger, carbon‐dense trees to succeed. Multiple scales of lidar were collected by NASA in Lopé National Park, Gabon from 2015 to 2022. Utilizing two airborne lidar datasets in an African forest elephant stronghold, detailed canopy structural information was used in conjunction with elephant trail data to determine how forest structure varies on and off trails. Forest along elephant trails displayed different structural characteristics than forested areas off trails, with lower canopy height, canopy cover, and different vertical distribution of plant density. Less plant area density was found on trails at 1 m in height, while more vegetation was found at 12 m, compared to off trail locations. Trails in forest areas with previous logging history had lower plant area in the top of the canopy. Forest elephants can be considered as “logging light” ecosystem engineers, affecting canopy structure through browsing and movement. Both airborne lidar scales were able to capture elephant impact along trails, with the high‐resolution discrete return lidar performing higher than waveform lidar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing in Ecology and Conservation
Remote Sensing in Ecology and Conservation Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
9.80
自引率
5.50%
发文量
69
审稿时长
18 weeks
期刊介绍: emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students. Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信