使用基于 LSTM 模型的综合方法预测日流量:Brahmani-Baitarani 流域案例研究

Abinash Sahoo , Swayamshu Satyapragnya Parida , Sandeep Samantaray , Deba Prakash Satapathy
{"title":"使用基于 LSTM 模型的综合方法预测日流量:Brahmani-Baitarani 流域案例研究","authors":"Abinash Sahoo ,&nbsp;Swayamshu Satyapragnya Parida ,&nbsp;Sandeep Samantaray ,&nbsp;Deba Prakash Satapathy","doi":"10.1016/j.hydres.2024.04.006","DOIUrl":null,"url":null,"abstract":"<div><p>For flood control, hydropower operation, and agricultural planning, among other applications, flow discharge prediction is a critical first step toward the strong and dependable planning and management of water resources. Floods are destructive natural calamities that destroy human lives and infrastructure across the world. Development of effective flood forecasting and prediction models is critical for minimising deaths and mitigating damages. This study employs hybrid deep learning Long Short Term Memory (LSTM) algorithms like LSTM, Convolution LSTM (Conv-LSTM) and Convolutional Neural Network LSTM (CNN-LSTM) to predict likelihood flood events using daily precipitation, daily temperature and daily relative humidity from two flood-forecasting stations i.e., Champua (Baitarani River, Odisha) and Jarikela (Brahmani River, Odisha) over a 20-year period. The results show that CNN-LSTM performed best followed by Conv-LSTM and LSTM in terms of R<sup>2</sup> = 0.98055, 0.96564, and 0.93244, RMSE = 19.137, 35.635, and 49.347, MAE = 18.372, 33.766, and 47.058, NSE = 0.971, 0.9517 and 0.9257 respectively. The findings support the claim that machine learning models and algorithms, in particular CNN-LSTM model, can be applied to flood forecasting with high accuracy, thereby enhancing water and hazard management.</p></div>","PeriodicalId":100615,"journal":{"name":"HydroResearch","volume":"7 ","pages":"Pages 272-284"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589757824000167/pdfft?md5=877f227a2a194f80c8c9d584ef048e10&pid=1-s2.0-S2589757824000167-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Daily flow discharge prediction using integrated methodology based on LSTM models: Case study in Brahmani-Baitarani basin\",\"authors\":\"Abinash Sahoo ,&nbsp;Swayamshu Satyapragnya Parida ,&nbsp;Sandeep Samantaray ,&nbsp;Deba Prakash Satapathy\",\"doi\":\"10.1016/j.hydres.2024.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For flood control, hydropower operation, and agricultural planning, among other applications, flow discharge prediction is a critical first step toward the strong and dependable planning and management of water resources. Floods are destructive natural calamities that destroy human lives and infrastructure across the world. Development of effective flood forecasting and prediction models is critical for minimising deaths and mitigating damages. This study employs hybrid deep learning Long Short Term Memory (LSTM) algorithms like LSTM, Convolution LSTM (Conv-LSTM) and Convolutional Neural Network LSTM (CNN-LSTM) to predict likelihood flood events using daily precipitation, daily temperature and daily relative humidity from two flood-forecasting stations i.e., Champua (Baitarani River, Odisha) and Jarikela (Brahmani River, Odisha) over a 20-year period. The results show that CNN-LSTM performed best followed by Conv-LSTM and LSTM in terms of R<sup>2</sup> = 0.98055, 0.96564, and 0.93244, RMSE = 19.137, 35.635, and 49.347, MAE = 18.372, 33.766, and 47.058, NSE = 0.971, 0.9517 and 0.9257 respectively. The findings support the claim that machine learning models and algorithms, in particular CNN-LSTM model, can be applied to flood forecasting with high accuracy, thereby enhancing water and hazard management.</p></div>\",\"PeriodicalId\":100615,\"journal\":{\"name\":\"HydroResearch\",\"volume\":\"7 \",\"pages\":\"Pages 272-284\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589757824000167/pdfft?md5=877f227a2a194f80c8c9d584ef048e10&pid=1-s2.0-S2589757824000167-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HydroResearch\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589757824000167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HydroResearch","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589757824000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在防洪、水电运行和农业规划等应用中,流量排放预测是实现有力、可靠的水资源规划和管理的关键第一步。洪水是毁灭性的自然灾害,在世界各地摧毁着人类的生命和基础设施。开发有效的洪水预测和预报模型对于最大限度地减少死亡和减轻损失至关重要。本研究采用混合深度学习长短期记忆(LSTM)算法,如 LSTM、卷积 LSTM(Conv-LSTM)和卷积神经网络 LSTM(CNN-LSTM),利用两个洪水预报站(即 Champua(奥迪沙邦 Baitarani 河)和 Jarikela(奥迪沙邦 Brahmani 河))20 年内的日降水量、日温度和日相对湿度预测可能发生的洪水事件。结果显示,CNN-LSTM 的 R2 = 0.98055、0.96564 和 0.93244,RMSE = 19.137、35.635 和 49.347,MAE = 18.372、33.766 和 47.058,NSE = 0.971、0.9517 和 0.9257,CNN-LSTM 的表现最佳,其次是 Conv-LSTM 和 LSTM。这些研究结果证明,机器学习模型和算法,尤其是 CNN-LSTM 模型,可以高精度地应用于洪水预报,从而加强水和灾害管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Daily flow discharge prediction using integrated methodology based on LSTM models: Case study in Brahmani-Baitarani basin

For flood control, hydropower operation, and agricultural planning, among other applications, flow discharge prediction is a critical first step toward the strong and dependable planning and management of water resources. Floods are destructive natural calamities that destroy human lives and infrastructure across the world. Development of effective flood forecasting and prediction models is critical for minimising deaths and mitigating damages. This study employs hybrid deep learning Long Short Term Memory (LSTM) algorithms like LSTM, Convolution LSTM (Conv-LSTM) and Convolutional Neural Network LSTM (CNN-LSTM) to predict likelihood flood events using daily precipitation, daily temperature and daily relative humidity from two flood-forecasting stations i.e., Champua (Baitarani River, Odisha) and Jarikela (Brahmani River, Odisha) over a 20-year period. The results show that CNN-LSTM performed best followed by Conv-LSTM and LSTM in terms of R2 = 0.98055, 0.96564, and 0.93244, RMSE = 19.137, 35.635, and 49.347, MAE = 18.372, 33.766, and 47.058, NSE = 0.971, 0.9517 and 0.9257 respectively. The findings support the claim that machine learning models and algorithms, in particular CNN-LSTM model, can be applied to flood forecasting with high accuracy, thereby enhancing water and hazard management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信