由面部表情和舞蹈动作驱动的联合音乐生成 D2MNet

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2024-05-05 DOI:10.1016/j.array.2024.100348
Jiang Huang, Xianglin Huang, Lifang Yang, Zhulin Tao
{"title":"由面部表情和舞蹈动作驱动的联合音乐生成 D2MNet","authors":"Jiang Huang,&nbsp;Xianglin Huang,&nbsp;Lifang Yang,&nbsp;Zhulin Tao","doi":"10.1016/j.array.2024.100348","DOIUrl":null,"url":null,"abstract":"<div><p>In general, dance is always associated with music to improve stage performance effect. As we know, artificial music arrangement consumes a lot of time and manpower. While automatic music arrangement based on input dance video perfectly solves this problem. In the cross-modal music generation task, we take advantage of the complementary information between two input modalities of facial expressions and dance movements. Then we present Dance2MusicNet (D2MNet), an autoregressive generation model based on dilated convolution, which adopts two feature vectors, dance style and beats, as control signals to generate real and diverse music that matches dance video. Finally, a comprehensive evaluation method for qualitative and quantitative experiment is proposed. Compared to baseline methods, D2MNet outperforms better in all evaluating metrics, which clearly demonstrates the effectiveness of our framework.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"22 ","pages":"Article 100348"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590005624000146/pdfft?md5=57bcf00a132e600642ca5c16a65b9121&pid=1-s2.0-S2590005624000146-main.pdf","citationCount":"0","resultStr":"{\"title\":\"D2MNet for music generation joint driven by facial expressions and dance movements\",\"authors\":\"Jiang Huang,&nbsp;Xianglin Huang,&nbsp;Lifang Yang,&nbsp;Zhulin Tao\",\"doi\":\"10.1016/j.array.2024.100348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In general, dance is always associated with music to improve stage performance effect. As we know, artificial music arrangement consumes a lot of time and manpower. While automatic music arrangement based on input dance video perfectly solves this problem. In the cross-modal music generation task, we take advantage of the complementary information between two input modalities of facial expressions and dance movements. Then we present Dance2MusicNet (D2MNet), an autoregressive generation model based on dilated convolution, which adopts two feature vectors, dance style and beats, as control signals to generate real and diverse music that matches dance video. Finally, a comprehensive evaluation method for qualitative and quantitative experiment is proposed. Compared to baseline methods, D2MNet outperforms better in all evaluating metrics, which clearly demonstrates the effectiveness of our framework.</p></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"22 \",\"pages\":\"Article 100348\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590005624000146/pdfft?md5=57bcf00a132e600642ca5c16a65b9121&pid=1-s2.0-S2590005624000146-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005624000146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005624000146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

一般来说,舞蹈总是与音乐联系在一起,以提高舞台表演效果。众所周知,人工编曲需要耗费大量的时间和人力。而基于输入舞蹈视频的自动编曲则完美地解决了这一问题。在跨模态音乐生成任务中,我们利用了面部表情和舞蹈动作两种输入模态之间的互补信息。然后,我们提出了基于扩张卷积的自回归生成模型 Dance2MusicNet(D2MNet),该模型采用舞蹈风格和节拍两个特征向量作为控制信号,生成与舞蹈视频匹配的真实而多样的音乐。最后,提出了定性和定量实验的综合评估方法。与基线方法相比,D2MNet 在所有评价指标上的表现都更好,这清楚地表明了我们框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
D2MNet for music generation joint driven by facial expressions and dance movements

In general, dance is always associated with music to improve stage performance effect. As we know, artificial music arrangement consumes a lot of time and manpower. While automatic music arrangement based on input dance video perfectly solves this problem. In the cross-modal music generation task, we take advantage of the complementary information between two input modalities of facial expressions and dance movements. Then we present Dance2MusicNet (D2MNet), an autoregressive generation model based on dilated convolution, which adopts two feature vectors, dance style and beats, as control signals to generate real and diverse music that matches dance video. Finally, a comprehensive evaluation method for qualitative and quantitative experiment is proposed. Compared to baseline methods, D2MNet outperforms better in all evaluating metrics, which clearly demonstrates the effectiveness of our framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信