{"title":"Alpha&ESMhFolds:用于比较人类参考蛋白质组的 AlphaFold2 和 ESMFold 模型的网络服务器。","authors":"","doi":"10.1016/j.jmb.2024.168593","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a novel database Alpha&ESMhFolds which allows the direct comparison of AlphaFold2 and ESMFold predicted models for 42,942 proteins of the Reference Human Proteome, and when available, their comparison with 2,900 directly associated PDB structures with at least a structure to sequence coverage of 70%. Statistics indicate that good quality models tend to overlap with a TM-score >0.6 as long as some PDB structural information is available. As expected, a direct model superimposition to the PDB structure highlights that AlphaFold2 models are slightly superior to ESMFold ones. However, some 55% of the database is endowed with models overlapping with TM-score <0.6. This highlights the different outputs of the two methods. The database is freely available for usage at <span><span>https://alpha-esmhfolds.biocomp.unibo.it/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001888/pdfft?md5=651ba8cbf02ebb961f449f53c61da1d2&pid=1-s2.0-S0022283624001888-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Alpha&ESMhFolds: A Web Server for Comparing AlphaFold2 and ESMFold Models of the Human Reference Proteome\",\"authors\":\"\",\"doi\":\"10.1016/j.jmb.2024.168593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a novel database Alpha&ESMhFolds which allows the direct comparison of AlphaFold2 and ESMFold predicted models for 42,942 proteins of the Reference Human Proteome, and when available, their comparison with 2,900 directly associated PDB structures with at least a structure to sequence coverage of 70%. Statistics indicate that good quality models tend to overlap with a TM-score >0.6 as long as some PDB structural information is available. As expected, a direct model superimposition to the PDB structure highlights that AlphaFold2 models are slightly superior to ESMFold ones. However, some 55% of the database is endowed with models overlapping with TM-score <0.6. This highlights the different outputs of the two methods. The database is freely available for usage at <span><span>https://alpha-esmhfolds.biocomp.unibo.it/</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022283624001888/pdfft?md5=651ba8cbf02ebb961f449f53c61da1d2&pid=1-s2.0-S0022283624001888-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283624001888\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624001888","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Alpha&ESMhFolds: A Web Server for Comparing AlphaFold2 and ESMFold Models of the Human Reference Proteome
We develop a novel database Alpha&ESMhFolds which allows the direct comparison of AlphaFold2 and ESMFold predicted models for 42,942 proteins of the Reference Human Proteome, and when available, their comparison with 2,900 directly associated PDB structures with at least a structure to sequence coverage of 70%. Statistics indicate that good quality models tend to overlap with a TM-score >0.6 as long as some PDB structural information is available. As expected, a direct model superimposition to the PDB structure highlights that AlphaFold2 models are slightly superior to ESMFold ones. However, some 55% of the database is endowed with models overlapping with TM-score <0.6. This highlights the different outputs of the two methods. The database is freely available for usage at https://alpha-esmhfolds.biocomp.unibo.it/.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.