María Chara, Ricardo Podestá, Luciane Quoos, Ricardo Toledano
{"title":"提升等二代数几何代码","authors":"María Chara, Ricardo Podestá, Luciane Quoos, Ricardo Toledano","doi":"10.1007/s10623-024-01412-y","DOIUrl":null,"url":null,"abstract":"<p>In this work we investigate the problem of producing iso-dual algebraic geometry (AG) codes over a finite field <span>\\(\\mathbb {F}_{q}\\)</span> with <i>q</i> elements. Given a finite separable extension <span>\\(\\mathcal {M}/\\mathcal {F}\\)</span> of function fields and an iso-dual AG-code <span>\\(\\mathcal {C}\\)</span> defined over <span>\\(\\mathcal {F}\\)</span>, we provide a general method to lift the code <span>\\(\\mathcal {C}\\)</span> to another iso-dual AG-code <span>\\(\\tilde{\\mathcal {C}}\\)</span> defined over <span>\\(\\mathcal {M}\\)</span> under some assumptions on the parity of the involved different exponents. We apply this method to lift iso-dual AG-codes over the rational function field to elementary abelian <i>p</i>-extensions, like the maximal function fields defined by the Hermitian, Suzuki, and one covered by the <i>GGS</i> function field. We also obtain long binary and ternary iso-dual AG-codes defined over cyclotomic extensions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifting iso-dual algebraic geometry codes\",\"authors\":\"María Chara, Ricardo Podestá, Luciane Quoos, Ricardo Toledano\",\"doi\":\"10.1007/s10623-024-01412-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work we investigate the problem of producing iso-dual algebraic geometry (AG) codes over a finite field <span>\\\\(\\\\mathbb {F}_{q}\\\\)</span> with <i>q</i> elements. Given a finite separable extension <span>\\\\(\\\\mathcal {M}/\\\\mathcal {F}\\\\)</span> of function fields and an iso-dual AG-code <span>\\\\(\\\\mathcal {C}\\\\)</span> defined over <span>\\\\(\\\\mathcal {F}\\\\)</span>, we provide a general method to lift the code <span>\\\\(\\\\mathcal {C}\\\\)</span> to another iso-dual AG-code <span>\\\\(\\\\tilde{\\\\mathcal {C}}\\\\)</span> defined over <span>\\\\(\\\\mathcal {M}\\\\)</span> under some assumptions on the parity of the involved different exponents. We apply this method to lift iso-dual AG-codes over the rational function field to elementary abelian <i>p</i>-extensions, like the maximal function fields defined by the Hermitian, Suzuki, and one covered by the <i>GGS</i> function field. We also obtain long binary and ternary iso-dual AG-codes defined over cyclotomic extensions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01412-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01412-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们研究了在具有 q 个元素的有限域 \(\mathbb {F}_{q}\) 上生成等双代数几何(AG)代码的问题。给定函数域的有限可分离扩展 \(\mathcal {M}/\mathcal {F}\) 和定义在 \(\mathcal {F}\) 上的等双 AG 代码 \(\mathcal {C}\)、我们提供了一种一般方法,在对所涉及的不同指数的奇偶性做一些假设的情况下,将代码 \(\mathcal {C}\) 提升到定义在 \(\mathcal {M}\) 上的另一个等双 AG 代码 \(\tilde/{mathcal {C}\) 。我们应用这种方法把有理函数域上的等双 AG 代码提升到基本无住民 p 扩展,比如由赫尔墨斯、铃木和一个由 GGS 函数域覆盖的最大函数域定义的等双 AG 代码。我们还获得了定义在环函扩展上的长二元和三元等双 AG 代码。
In this work we investigate the problem of producing iso-dual algebraic geometry (AG) codes over a finite field \(\mathbb {F}_{q}\) with q elements. Given a finite separable extension \(\mathcal {M}/\mathcal {F}\) of function fields and an iso-dual AG-code \(\mathcal {C}\) defined over \(\mathcal {F}\), we provide a general method to lift the code \(\mathcal {C}\) to another iso-dual AG-code \(\tilde{\mathcal {C}}\) defined over \(\mathcal {M}\) under some assumptions on the parity of the involved different exponents. We apply this method to lift iso-dual AG-codes over the rational function field to elementary abelian p-extensions, like the maximal function fields defined by the Hermitian, Suzuki, and one covered by the GGS function field. We also obtain long binary and ternary iso-dual AG-codes defined over cyclotomic extensions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.