纯氘系统中的超热离子驱动聚变链式反应

IF 2.1 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
A P L Robinson
{"title":"纯氘系统中的超热离子驱动聚变链式反应","authors":"A P L Robinson","doi":"10.1088/1361-6587/ad441a","DOIUrl":null,"url":null,"abstract":"It is argued that fusion chain reactions in the D-D system is feasible with supra-thermal deuterons in the MeV regime, with new generations of deuterons being generated either via neutron–deuteron or proton–deuteron collisions. The propagation of supra-thermal deuterons in an infinite, hot, dense deuterium target was studied using a Monte Carlo method that includes multiple nuclear reactions, electron and ion stopping, along with neutron and proton knock-ons. Over a wide range of densities we observed significant, albeit sub-critical chain reactions in the multi-keV temperature regime. At very high densities (over 1000 gcm−3) and temperatures (over 40 keV) we observed chain reactions that reached criticality. These results suggest that there is a case to re-assess the potential of inertial confinement fusion based on deuterium-heavy targets.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"35 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suprathermal-ion-driven fusion chain reactions in the pure deuterium system\",\"authors\":\"A P L Robinson\",\"doi\":\"10.1088/1361-6587/ad441a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is argued that fusion chain reactions in the D-D system is feasible with supra-thermal deuterons in the MeV regime, with new generations of deuterons being generated either via neutron–deuteron or proton–deuteron collisions. The propagation of supra-thermal deuterons in an infinite, hot, dense deuterium target was studied using a Monte Carlo method that includes multiple nuclear reactions, electron and ion stopping, along with neutron and proton knock-ons. Over a wide range of densities we observed significant, albeit sub-critical chain reactions in the multi-keV temperature regime. At very high densities (over 1000 gcm−3) and temperatures (over 40 keV) we observed chain reactions that reached criticality. These results suggest that there is a case to re-assess the potential of inertial confinement fusion based on deuterium-heavy targets.\",\"PeriodicalId\":20239,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad441a\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad441a","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

研究认为,D-D 系统中的核聚变链式反应可以通过 MeV 级的超热氘核进行,新一代的氘核通过中子-氘核或质子-氘核碰撞产生。我们使用蒙特卡洛方法研究了超热氘核在无限、高温、高密度氘靶中的传播,该方法包括多种核反应、电子和离子停止以及中子和质子撞击。在很宽的密度范围内,我们观察到在多 kEV 温度范围内发生了显著的链式反应,尽管是次临界反应。在非常高的密度(超过 1000 gcm-3)和温度(超过 40 keV)下,我们观察到达到临界的链式反应。这些结果表明,有必要重新评估基于氘重目标的惯性约束聚变的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suprathermal-ion-driven fusion chain reactions in the pure deuterium system
It is argued that fusion chain reactions in the D-D system is feasible with supra-thermal deuterons in the MeV regime, with new generations of deuterons being generated either via neutron–deuteron or proton–deuteron collisions. The propagation of supra-thermal deuterons in an infinite, hot, dense deuterium target was studied using a Monte Carlo method that includes multiple nuclear reactions, electron and ion stopping, along with neutron and proton knock-ons. Over a wide range of densities we observed significant, albeit sub-critical chain reactions in the multi-keV temperature regime. At very high densities (over 1000 gcm−3) and temperatures (over 40 keV) we observed chain reactions that reached criticality. These results suggest that there is a case to re-assess the potential of inertial confinement fusion based on deuterium-heavy targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Physics and Controlled Fusion
Plasma Physics and Controlled Fusion 物理-物理:核物理
CiteScore
4.50
自引率
13.60%
发文量
224
审稿时长
4.5 months
期刊介绍: Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods. Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信