通过显式椭圆曲线研究希尔伯特第 10 个问题

IF 1.3 2区 数学 Q1 MATHEMATICS
Debanjana Kundu, Antonio Lei, Florian Sprung
{"title":"通过显式椭圆曲线研究希尔伯特第 10 个问题","authors":"Debanjana Kundu, Antonio Lei, Florian Sprung","doi":"10.1007/s00208-024-02879-9","DOIUrl":null,"url":null,"abstract":"<p>N. García-Fritz and H. Pasten showed that Hilbert’s 10th problem is unsolvable in the ring of integers of number fields of the form <span>\\(\\mathbb {Q}(\\root 3 \\of {p},\\sqrt{-q})\\)</span> for positive proportions of primes <i>p</i> and <i>q</i>. We improve their proportions and extend their results to the case of number fields of the form <span>\\(\\mathbb {Q}(\\root 3 \\of {p},\\sqrt{Dq})\\)</span>, where <i>D</i> belongs to an explicit family of positive square-free integers. We achieve this by using multiple elliptic curves, and replace their Iwasawa theory arguments by a more direct method.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"49 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying Hilbert’s 10th problem via explicit elliptic curves\",\"authors\":\"Debanjana Kundu, Antonio Lei, Florian Sprung\",\"doi\":\"10.1007/s00208-024-02879-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>N. García-Fritz and H. Pasten showed that Hilbert’s 10th problem is unsolvable in the ring of integers of number fields of the form <span>\\\\(\\\\mathbb {Q}(\\\\root 3 \\\\of {p},\\\\sqrt{-q})\\\\)</span> for positive proportions of primes <i>p</i> and <i>q</i>. We improve their proportions and extend their results to the case of number fields of the form <span>\\\\(\\\\mathbb {Q}(\\\\root 3 \\\\of {p},\\\\sqrt{Dq})\\\\)</span>, where <i>D</i> belongs to an explicit family of positive square-free integers. We achieve this by using multiple elliptic curves, and replace their Iwasawa theory arguments by a more direct method.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02879-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02879-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

N.加西亚-弗里茨(García-Fritz)和帕斯滕(H. Pasten)指出,希尔伯特第 10 个问题在形式为 \(\mathbb {Q}(\root 3 \of {p},\sqrt{-q})\)的数域的整数环中对于素数 p 和 q 的正比例是无解的。我们改进了他们的比例,并将他们的结果扩展到形式为 \(\mathbb {Q}(\root 3 \of {p},\sqrt{Dq})\) 的数域,其中 D 属于一个明确的无平方正整数族。我们通过使用多重椭圆曲线来实现这一点,并用一种更直接的方法取代了岩泽理论的论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Studying Hilbert’s 10th problem via explicit elliptic curves

Studying Hilbert’s 10th problem via explicit elliptic curves

N. García-Fritz and H. Pasten showed that Hilbert’s 10th problem is unsolvable in the ring of integers of number fields of the form \(\mathbb {Q}(\root 3 \of {p},\sqrt{-q})\) for positive proportions of primes p and q. We improve their proportions and extend their results to the case of number fields of the form \(\mathbb {Q}(\root 3 \of {p},\sqrt{Dq})\), where D belongs to an explicit family of positive square-free integers. We achieve this by using multiple elliptic curves, and replace their Iwasawa theory arguments by a more direct method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信