{"title":"通过显式椭圆曲线研究希尔伯特第 10 个问题","authors":"Debanjana Kundu, Antonio Lei, Florian Sprung","doi":"10.1007/s00208-024-02879-9","DOIUrl":null,"url":null,"abstract":"<p>N. García-Fritz and H. Pasten showed that Hilbert’s 10th problem is unsolvable in the ring of integers of number fields of the form <span>\\(\\mathbb {Q}(\\root 3 \\of {p},\\sqrt{-q})\\)</span> for positive proportions of primes <i>p</i> and <i>q</i>. We improve their proportions and extend their results to the case of number fields of the form <span>\\(\\mathbb {Q}(\\root 3 \\of {p},\\sqrt{Dq})\\)</span>, where <i>D</i> belongs to an explicit family of positive square-free integers. We achieve this by using multiple elliptic curves, and replace their Iwasawa theory arguments by a more direct method.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"49 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying Hilbert’s 10th problem via explicit elliptic curves\",\"authors\":\"Debanjana Kundu, Antonio Lei, Florian Sprung\",\"doi\":\"10.1007/s00208-024-02879-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>N. García-Fritz and H. Pasten showed that Hilbert’s 10th problem is unsolvable in the ring of integers of number fields of the form <span>\\\\(\\\\mathbb {Q}(\\\\root 3 \\\\of {p},\\\\sqrt{-q})\\\\)</span> for positive proportions of primes <i>p</i> and <i>q</i>. We improve their proportions and extend their results to the case of number fields of the form <span>\\\\(\\\\mathbb {Q}(\\\\root 3 \\\\of {p},\\\\sqrt{Dq})\\\\)</span>, where <i>D</i> belongs to an explicit family of positive square-free integers. We achieve this by using multiple elliptic curves, and replace their Iwasawa theory arguments by a more direct method.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02879-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02879-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Studying Hilbert’s 10th problem via explicit elliptic curves
N. García-Fritz and H. Pasten showed that Hilbert’s 10th problem is unsolvable in the ring of integers of number fields of the form \(\mathbb {Q}(\root 3 \of {p},\sqrt{-q})\) for positive proportions of primes p and q. We improve their proportions and extend their results to the case of number fields of the form \(\mathbb {Q}(\root 3 \of {p},\sqrt{Dq})\), where D belongs to an explicit family of positive square-free integers. We achieve this by using multiple elliptic curves, and replace their Iwasawa theory arguments by a more direct method.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.