量子隧道的通量和对称效应

IF 1.3 2区 数学 Q1 MATHEMATICS
Bernard Helffer, Ayman Kachmar, Mikael Persson Sundqvist
{"title":"量子隧道的通量和对称效应","authors":"Bernard Helffer, Ayman Kachmar, Mikael Persson Sundqvist","doi":"10.1007/s00208-024-02874-0","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the analysis of the tunneling effect for the magnetic Laplacian, we introduce an abstract framework for the spectral reduction of a self-adjoint operator to a hermitian matrix. We illustrate this framework by three applications, firstly the electro-magnetic Laplacian with constant magnetic field and three equidistant potential wells, secondly a pure constant magnetic field and Neumann boundary condition in a smoothed triangle, and thirdly a magnetic step where the discontinuity line is a smoothed triangle. Flux effects are visible in the three aforementioned settings through the occurrence of eigenvalue crossings. Moreover, in the electro-magnetic Laplacian setting with double well radial potential, we rule out an artificial condition on the distance of the wells and extend the range of validity for the tunneling approximation recently established in Fefferman et al. (SIAM J Math Anal 54: 1105–1130, 2022), Helffer &amp; Kachmar (Pure Appl Anal, 2024), thereby settling the problem of electro-magnetic tunneling under constant magnetic field and a sum of translated radial electric potentials.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"81 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flux and symmetry effects on quantum tunneling\",\"authors\":\"Bernard Helffer, Ayman Kachmar, Mikael Persson Sundqvist\",\"doi\":\"10.1007/s00208-024-02874-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by the analysis of the tunneling effect for the magnetic Laplacian, we introduce an abstract framework for the spectral reduction of a self-adjoint operator to a hermitian matrix. We illustrate this framework by three applications, firstly the electro-magnetic Laplacian with constant magnetic field and three equidistant potential wells, secondly a pure constant magnetic field and Neumann boundary condition in a smoothed triangle, and thirdly a magnetic step where the discontinuity line is a smoothed triangle. Flux effects are visible in the three aforementioned settings through the occurrence of eigenvalue crossings. Moreover, in the electro-magnetic Laplacian setting with double well radial potential, we rule out an artificial condition on the distance of the wells and extend the range of validity for the tunneling approximation recently established in Fefferman et al. (SIAM J Math Anal 54: 1105–1130, 2022), Helffer &amp; Kachmar (Pure Appl Anal, 2024), thereby settling the problem of electro-magnetic tunneling under constant magnetic field and a sum of translated radial electric potentials.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02874-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02874-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受对磁拉普拉卡矩阵隧道效应分析的启发,我们引入了一个抽象框架,用于将自相关算子的谱还原为隐含矩阵。我们通过三个应用来说明这一框架,首先是具有恒定磁场和三个等距势阱的电磁拉普拉斯;其次是平滑三角形中的纯恒定磁场和诺依曼边界条件;第三是磁阶跃,其中间断线是一个平滑三角形。在上述三种情况下,通量效应通过特征值交叉的出现而显现出来。此外,在具有双井径向电势的电磁拉普拉斯设置中,我们排除了井距的人为条件,并扩展了最近在 Fefferman 等人(SIAM J Math Anal 54: 1105-1130, 2022)、Helffer & Kachmar(Pure Appl Anal, 2024)中建立的隧道近似的有效范围,从而解决了恒定磁场和平移径向电势之和下的电磁隧道问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flux and symmetry effects on quantum tunneling

Flux and symmetry effects on quantum tunneling

Motivated by the analysis of the tunneling effect for the magnetic Laplacian, we introduce an abstract framework for the spectral reduction of a self-adjoint operator to a hermitian matrix. We illustrate this framework by three applications, firstly the electro-magnetic Laplacian with constant magnetic field and three equidistant potential wells, secondly a pure constant magnetic field and Neumann boundary condition in a smoothed triangle, and thirdly a magnetic step where the discontinuity line is a smoothed triangle. Flux effects are visible in the three aforementioned settings through the occurrence of eigenvalue crossings. Moreover, in the electro-magnetic Laplacian setting with double well radial potential, we rule out an artificial condition on the distance of the wells and extend the range of validity for the tunneling approximation recently established in Fefferman et al. (SIAM J Math Anal 54: 1105–1130, 2022), Helffer & Kachmar (Pure Appl Anal, 2024), thereby settling the problem of electro-magnetic tunneling under constant magnetic field and a sum of translated radial electric potentials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信