{"title":"沿函数域中的不还原性的相交多项式","authors":"Guoquan Li","doi":"10.1007/s11139-024-00865-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\mathbb {F}_q[t]\\)</span> be the polynomial ring over the finite field <span>\\(\\mathbb {F}_q\\)</span> of <i>q</i> elements. For a natural number <span>\\(N\\ge 1,\\)</span> let <span>\\(\\mathbb {G}_N\\)</span> be the subset of <span>\\(\\mathbb {F}_q[t]\\)</span> containing all polynomials of degree less than <i>N</i>. Let <span>\\(h\\in \\mathbb {F}_q[t][x]\\)</span> be a polynomial of degree <span>\\(2\\le k<p,\\)</span> the characteristic of <span>\\(\\mathbb {F}_q.\\)</span> Suppose that for every <span>\\(d\\in \\mathbb {F}_q[t]\\setminus \\{0\\},\\)</span> there exists <span>\\(m\\in \\mathbb {F}_q[t]\\)</span> such that <span>\\(d\\mid h(m)\\)</span> and <span>\\((d,m)=1.\\)</span> Let <span>\\(A\\subseteq \\mathbb {G}_N\\)</span> with <span>\\(|A|=\\delta q^N.\\)</span> Suppose further that <span>\\((A-A)\\cap \\left( h(\\Omega )\\setminus \\{0\\}\\right) =\\emptyset ,\\)</span> where <span>\\(A-A\\)</span> is the difference set of <i>A</i> and <span>\\(\\Omega \\)</span> denotes the set of all monic irreducible polynomials in <span>\\(\\mathbb {F}_q[t]\\)</span>. It is proved that <span>\\(\\delta \\ll N^{-\\mu }\\)</span> for any <span>\\(0<\\mu <1/(2k-2),\\)</span> where the implied constant depends only on <span>\\(q,\\ h\\)</span> and <span>\\(\\mu .\\)</span></p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersective polynomials along the irreducibles in function fields\",\"authors\":\"Guoquan Li\",\"doi\":\"10.1007/s11139-024-00865-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\mathbb {F}_q[t]\\\\)</span> be the polynomial ring over the finite field <span>\\\\(\\\\mathbb {F}_q\\\\)</span> of <i>q</i> elements. For a natural number <span>\\\\(N\\\\ge 1,\\\\)</span> let <span>\\\\(\\\\mathbb {G}_N\\\\)</span> be the subset of <span>\\\\(\\\\mathbb {F}_q[t]\\\\)</span> containing all polynomials of degree less than <i>N</i>. Let <span>\\\\(h\\\\in \\\\mathbb {F}_q[t][x]\\\\)</span> be a polynomial of degree <span>\\\\(2\\\\le k<p,\\\\)</span> the characteristic of <span>\\\\(\\\\mathbb {F}_q.\\\\)</span> Suppose that for every <span>\\\\(d\\\\in \\\\mathbb {F}_q[t]\\\\setminus \\\\{0\\\\},\\\\)</span> there exists <span>\\\\(m\\\\in \\\\mathbb {F}_q[t]\\\\)</span> such that <span>\\\\(d\\\\mid h(m)\\\\)</span> and <span>\\\\((d,m)=1.\\\\)</span> Let <span>\\\\(A\\\\subseteq \\\\mathbb {G}_N\\\\)</span> with <span>\\\\(|A|=\\\\delta q^N.\\\\)</span> Suppose further that <span>\\\\((A-A)\\\\cap \\\\left( h(\\\\Omega )\\\\setminus \\\\{0\\\\}\\\\right) =\\\\emptyset ,\\\\)</span> where <span>\\\\(A-A\\\\)</span> is the difference set of <i>A</i> and <span>\\\\(\\\\Omega \\\\)</span> denotes the set of all monic irreducible polynomials in <span>\\\\(\\\\mathbb {F}_q[t]\\\\)</span>. It is proved that <span>\\\\(\\\\delta \\\\ll N^{-\\\\mu }\\\\)</span> for any <span>\\\\(0<\\\\mu <1/(2k-2),\\\\)</span> where the implied constant depends only on <span>\\\\(q,\\\\ h\\\\)</span> and <span>\\\\(\\\\mu .\\\\)</span></p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00865-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00865-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 \(\mathbb {F}_q[t]\) 是有限域 \(\mathbb {F}_q\) 上 q 个元素的多项式环。对于一个自然数 \(N\ge 1,\),让 \(\mathbb {G}_N\) 是 \(\mathbb {F}_q[t]\) 的子集,包含所有阶数小于 N 的多项式。让 \(h\in \mathbb {F}_q[t][x]\) 是一个度的多项式 \(2\le k<p,\) 是 \(\mathbb {F}_q.t][x]\) 的特征。\Suppose that for every \(d\in \mathbb {F}_q[t]\setminus \{0\},\) there exists \(m\in \mathbb {F}_q[t]\) such that \(d\mid h(m)\) and \((d,m)=1.\)让(A(subseteq \mathbb {G}_N\) with \(|A|=\delta q^N.\Suppose further that \((A-A)\cap \left( h(\Omega )\setminus \{0\}\right) =\emptyset ,\) where \(A-A\) is the difference set of A and\(\Omega \) denotes the set of all monic irreducible polynomials in \(\mathbb {F}_q[t]\).证明了对于任何 \(0<\mu <1/(2k-2),\) 其中的隐含常数只取决于 \(q,\ h\) 和 \(\mu .\)
Intersective polynomials along the irreducibles in function fields
Let \(\mathbb {F}_q[t]\) be the polynomial ring over the finite field \(\mathbb {F}_q\) of q elements. For a natural number \(N\ge 1,\) let \(\mathbb {G}_N\) be the subset of \(\mathbb {F}_q[t]\) containing all polynomials of degree less than N. Let \(h\in \mathbb {F}_q[t][x]\) be a polynomial of degree \(2\le k<p,\) the characteristic of \(\mathbb {F}_q.\) Suppose that for every \(d\in \mathbb {F}_q[t]\setminus \{0\},\) there exists \(m\in \mathbb {F}_q[t]\) such that \(d\mid h(m)\) and \((d,m)=1.\) Let \(A\subseteq \mathbb {G}_N\) with \(|A|=\delta q^N.\) Suppose further that \((A-A)\cap \left( h(\Omega )\setminus \{0\}\right) =\emptyset ,\) where \(A-A\) is the difference set of A and \(\Omega \) denotes the set of all monic irreducible polynomials in \(\mathbb {F}_q[t]\). It is proved that \(\delta \ll N^{-\mu }\) for any \(0<\mu <1/(2k-2),\) where the implied constant depends only on \(q,\ h\) and \(\mu .\)