{"title":"q-Racah 概率分布","authors":"Masahito Hayashi, Akihito Hora, Shintarou Yanagida","doi":"10.1007/s11139-024-00859-w","DOIUrl":null,"url":null,"abstract":"<p>We introduce a certain discrete probability distribution <span>\\(P_{n,m,k,l;q}\\)</span> having non-negative integer parameters <i>n</i>, <i>m</i>, <i>k</i>, <i>l</i> and quantum parameter <i>q</i> which arises from a zonal spherical function of the Grassmannian over the finite field <span>\\(\\mathbb {F}_q\\)</span> with a distinguished spherical vector. Using representation theoretic arguments and hypergeometric summation technique, we derive the presentation of the probability mass function by a single <i>q</i>-Racah polynomial, and also the presentation of the cumulative distribution function in terms of a terminating <span>\\({}_4 \\phi _3\\)</span>-hypergeometric series.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"q-Racah probability distribution\",\"authors\":\"Masahito Hayashi, Akihito Hora, Shintarou Yanagida\",\"doi\":\"10.1007/s11139-024-00859-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a certain discrete probability distribution <span>\\\\(P_{n,m,k,l;q}\\\\)</span> having non-negative integer parameters <i>n</i>, <i>m</i>, <i>k</i>, <i>l</i> and quantum parameter <i>q</i> which arises from a zonal spherical function of the Grassmannian over the finite field <span>\\\\(\\\\mathbb {F}_q\\\\)</span> with a distinguished spherical vector. Using representation theoretic arguments and hypergeometric summation technique, we derive the presentation of the probability mass function by a single <i>q</i>-Racah polynomial, and also the presentation of the cumulative distribution function in terms of a terminating <span>\\\\({}_4 \\\\phi _3\\\\)</span>-hypergeometric series.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00859-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00859-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce a certain discrete probability distribution \(P_{n,m,k,l;q}\) having non-negative integer parameters n, m, k, l and quantum parameter q which arises from a zonal spherical function of the Grassmannian over the finite field \(\mathbb {F}_q\) with a distinguished spherical vector. Using representation theoretic arguments and hypergeometric summation technique, we derive the presentation of the probability mass function by a single q-Racah polynomial, and also the presentation of the cumulative distribution function in terms of a terminating \({}_4 \phi _3\)-hypergeometric series.