图中路径因子存在的无符号拉普拉斯谱半径距离

IF 0.9 3区 数学 Q2 MATHEMATICS
Sizhong Zhou, Zhiren Sun, Hongxia Liu
{"title":"图中路径因子存在的无符号拉普拉斯谱半径距离","authors":"Sizhong Zhou,&nbsp;Zhiren Sun,&nbsp;Hongxia Liu","doi":"10.1007/s00010-024-01075-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a connected graph of order <i>n</i>, where <i>n</i> is a positive integer. A spanning subgraph <i>F</i> of <i>G</i> is called a path-factor if every component of <i>F</i> is a path of order at least 2. A <span>\\(P_{\\ge k}\\)</span>-factor means a path-factor in which every component admits order at least <i>k</i> (<span>\\(k\\ge 2\\)</span>). The distance matrix <span>\\({\\mathcal {D}}(G)\\)</span> of <i>G</i> is an <span>\\(n\\times n\\)</span> real symmetric matrix whose (<i>i</i>, <i>j</i>)-entry is the distance between the vertices <span>\\(v_i\\)</span> and <span>\\(v_j\\)</span>. The distance signless Laplacian matrix <span>\\({\\mathcal {Q}}(G)\\)</span> of <i>G</i> is defined by <span>\\({\\mathcal {Q}}(G)=Tr(G)+{\\mathcal {D}}(G)\\)</span>, where <i>Tr</i>(<i>G</i>) is the diagonal matrix of the vertex transmissions in <i>G</i>. The largest eigenvalue <span>\\(\\eta _1(G)\\)</span> of <span>\\({\\mathcal {Q}}(G)\\)</span> is called the distance signless Laplacian spectral radius of <i>G</i>. In this paper, we aim to present a distance signless Laplacian spectral radius condition to guarantee the existence of a <span>\\(P_{\\ge 2}\\)</span>-factor in a graph and claim that the following statements are true: (i) <i>G</i> admits a <span>\\(P_{\\ge 2}\\)</span>-factor for <span>\\(n\\ge 4\\)</span> and <span>\\(n\\ne 7\\)</span> if <span>\\(\\eta _1(G)&lt;\\theta (n)\\)</span>, where <span>\\(\\theta (n)\\)</span> is the largest root of the equation <span>\\(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\\)</span>; (ii) <i>G</i> admits a <span>\\(P_{\\ge 2}\\)</span>-factor for <span>\\(n=7\\)</span> if <span>\\(\\eta _1(G)&lt;\\frac{25+\\sqrt{161}}{2}\\)</span>.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 3","pages":"727 - 737"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance signless Laplacian spectral radius for the existence of path-factors in graphs\",\"authors\":\"Sizhong Zhou,&nbsp;Zhiren Sun,&nbsp;Hongxia Liu\",\"doi\":\"10.1007/s00010-024-01075-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a connected graph of order <i>n</i>, where <i>n</i> is a positive integer. A spanning subgraph <i>F</i> of <i>G</i> is called a path-factor if every component of <i>F</i> is a path of order at least 2. A <span>\\\\(P_{\\\\ge k}\\\\)</span>-factor means a path-factor in which every component admits order at least <i>k</i> (<span>\\\\(k\\\\ge 2\\\\)</span>). The distance matrix <span>\\\\({\\\\mathcal {D}}(G)\\\\)</span> of <i>G</i> is an <span>\\\\(n\\\\times n\\\\)</span> real symmetric matrix whose (<i>i</i>, <i>j</i>)-entry is the distance between the vertices <span>\\\\(v_i\\\\)</span> and <span>\\\\(v_j\\\\)</span>. The distance signless Laplacian matrix <span>\\\\({\\\\mathcal {Q}}(G)\\\\)</span> of <i>G</i> is defined by <span>\\\\({\\\\mathcal {Q}}(G)=Tr(G)+{\\\\mathcal {D}}(G)\\\\)</span>, where <i>Tr</i>(<i>G</i>) is the diagonal matrix of the vertex transmissions in <i>G</i>. The largest eigenvalue <span>\\\\(\\\\eta _1(G)\\\\)</span> of <span>\\\\({\\\\mathcal {Q}}(G)\\\\)</span> is called the distance signless Laplacian spectral radius of <i>G</i>. In this paper, we aim to present a distance signless Laplacian spectral radius condition to guarantee the existence of a <span>\\\\(P_{\\\\ge 2}\\\\)</span>-factor in a graph and claim that the following statements are true: (i) <i>G</i> admits a <span>\\\\(P_{\\\\ge 2}\\\\)</span>-factor for <span>\\\\(n\\\\ge 4\\\\)</span> and <span>\\\\(n\\\\ne 7\\\\)</span> if <span>\\\\(\\\\eta _1(G)&lt;\\\\theta (n)\\\\)</span>, where <span>\\\\(\\\\theta (n)\\\\)</span> is the largest root of the equation <span>\\\\(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\\\\)</span>; (ii) <i>G</i> admits a <span>\\\\(P_{\\\\ge 2}\\\\)</span>-factor for <span>\\\\(n=7\\\\)</span> if <span>\\\\(\\\\eta _1(G)&lt;\\\\frac{25+\\\\sqrt{161}}{2}\\\\)</span>.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"98 3\",\"pages\":\"727 - 737\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01075-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01075-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是阶数为 n 的连通图,其中 n 为正整数。如果 F 的每个分量都是阶数至少为 2 的路径,那么 G 的一个遍历子图 F 称为路径因子。路径因子指的是每个分量的阶数至少为 k 的路径因子(\(k\ge 2\))。G的距离矩阵\({\mathcal {D}}(G)\) 是一个 \(n\times n\) 实对称矩阵,其(i, j)项是顶点\(v_i\) 和 \(v_j\)之间的距离。G 的距离无符号拉普拉斯矩阵({\mathcal {Q}}(G)\) 由 \({\mathcal {Q}}(G)=Tr(G)+{\mathcal {D}}(G)\) 定义,其中 Tr(G) 是 G 中顶点传输的对角矩阵。\({\mathcal {Q}}(G)\) 的最大特征值 \(eta _1(G)\) 被称为 G 的无符号拉普拉斯谱半径。本文旨在提出一个无距离符号的拉普拉斯谱半径条件,以保证图中存在一个 (P_{\ge 2}\)因子,并声称以下陈述为真:(i) 如果 \(\eta _1(G)<;\其中 \(\theta (n)\) 是方程 \(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\) 的最大根;(ii) 如果(\eta _1(G)<\frac{25+\sqrt{161}}{2}\),那么 G 对于(n=7)有一个(P_{ge 2}\)因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance signless Laplacian spectral radius for the existence of path-factors in graphs

Let G be a connected graph of order n, where n is a positive integer. A spanning subgraph F of G is called a path-factor if every component of F is a path of order at least 2. A \(P_{\ge k}\)-factor means a path-factor in which every component admits order at least k (\(k\ge 2\)). The distance matrix \({\mathcal {D}}(G)\) of G is an \(n\times n\) real symmetric matrix whose (ij)-entry is the distance between the vertices \(v_i\) and \(v_j\). The distance signless Laplacian matrix \({\mathcal {Q}}(G)\) of G is defined by \({\mathcal {Q}}(G)=Tr(G)+{\mathcal {D}}(G)\), where Tr(G) is the diagonal matrix of the vertex transmissions in G. The largest eigenvalue \(\eta _1(G)\) of \({\mathcal {Q}}(G)\) is called the distance signless Laplacian spectral radius of G. In this paper, we aim to present a distance signless Laplacian spectral radius condition to guarantee the existence of a \(P_{\ge 2}\)-factor in a graph and claim that the following statements are true: (i) G admits a \(P_{\ge 2}\)-factor for \(n\ge 4\) and \(n\ne 7\) if \(\eta _1(G)<\theta (n)\), where \(\theta (n)\) is the largest root of the equation \(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\); (ii) G admits a \(P_{\ge 2}\)-factor for \(n=7\) if \(\eta _1(G)<\frac{25+\sqrt{161}}{2}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信