{"title":"图中路径因子存在的无符号拉普拉斯谱半径距离","authors":"Sizhong Zhou, Zhiren Sun, Hongxia Liu","doi":"10.1007/s00010-024-01075-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a connected graph of order <i>n</i>, where <i>n</i> is a positive integer. A spanning subgraph <i>F</i> of <i>G</i> is called a path-factor if every component of <i>F</i> is a path of order at least 2. A <span>\\(P_{\\ge k}\\)</span>-factor means a path-factor in which every component admits order at least <i>k</i> (<span>\\(k\\ge 2\\)</span>). The distance matrix <span>\\({\\mathcal {D}}(G)\\)</span> of <i>G</i> is an <span>\\(n\\times n\\)</span> real symmetric matrix whose (<i>i</i>, <i>j</i>)-entry is the distance between the vertices <span>\\(v_i\\)</span> and <span>\\(v_j\\)</span>. The distance signless Laplacian matrix <span>\\({\\mathcal {Q}}(G)\\)</span> of <i>G</i> is defined by <span>\\({\\mathcal {Q}}(G)=Tr(G)+{\\mathcal {D}}(G)\\)</span>, where <i>Tr</i>(<i>G</i>) is the diagonal matrix of the vertex transmissions in <i>G</i>. The largest eigenvalue <span>\\(\\eta _1(G)\\)</span> of <span>\\({\\mathcal {Q}}(G)\\)</span> is called the distance signless Laplacian spectral radius of <i>G</i>. In this paper, we aim to present a distance signless Laplacian spectral radius condition to guarantee the existence of a <span>\\(P_{\\ge 2}\\)</span>-factor in a graph and claim that the following statements are true: (i) <i>G</i> admits a <span>\\(P_{\\ge 2}\\)</span>-factor for <span>\\(n\\ge 4\\)</span> and <span>\\(n\\ne 7\\)</span> if <span>\\(\\eta _1(G)<\\theta (n)\\)</span>, where <span>\\(\\theta (n)\\)</span> is the largest root of the equation <span>\\(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\\)</span>; (ii) <i>G</i> admits a <span>\\(P_{\\ge 2}\\)</span>-factor for <span>\\(n=7\\)</span> if <span>\\(\\eta _1(G)<\\frac{25+\\sqrt{161}}{2}\\)</span>.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 3","pages":"727 - 737"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance signless Laplacian spectral radius for the existence of path-factors in graphs\",\"authors\":\"Sizhong Zhou, Zhiren Sun, Hongxia Liu\",\"doi\":\"10.1007/s00010-024-01075-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a connected graph of order <i>n</i>, where <i>n</i> is a positive integer. A spanning subgraph <i>F</i> of <i>G</i> is called a path-factor if every component of <i>F</i> is a path of order at least 2. A <span>\\\\(P_{\\\\ge k}\\\\)</span>-factor means a path-factor in which every component admits order at least <i>k</i> (<span>\\\\(k\\\\ge 2\\\\)</span>). The distance matrix <span>\\\\({\\\\mathcal {D}}(G)\\\\)</span> of <i>G</i> is an <span>\\\\(n\\\\times n\\\\)</span> real symmetric matrix whose (<i>i</i>, <i>j</i>)-entry is the distance between the vertices <span>\\\\(v_i\\\\)</span> and <span>\\\\(v_j\\\\)</span>. The distance signless Laplacian matrix <span>\\\\({\\\\mathcal {Q}}(G)\\\\)</span> of <i>G</i> is defined by <span>\\\\({\\\\mathcal {Q}}(G)=Tr(G)+{\\\\mathcal {D}}(G)\\\\)</span>, where <i>Tr</i>(<i>G</i>) is the diagonal matrix of the vertex transmissions in <i>G</i>. The largest eigenvalue <span>\\\\(\\\\eta _1(G)\\\\)</span> of <span>\\\\({\\\\mathcal {Q}}(G)\\\\)</span> is called the distance signless Laplacian spectral radius of <i>G</i>. In this paper, we aim to present a distance signless Laplacian spectral radius condition to guarantee the existence of a <span>\\\\(P_{\\\\ge 2}\\\\)</span>-factor in a graph and claim that the following statements are true: (i) <i>G</i> admits a <span>\\\\(P_{\\\\ge 2}\\\\)</span>-factor for <span>\\\\(n\\\\ge 4\\\\)</span> and <span>\\\\(n\\\\ne 7\\\\)</span> if <span>\\\\(\\\\eta _1(G)<\\\\theta (n)\\\\)</span>, where <span>\\\\(\\\\theta (n)\\\\)</span> is the largest root of the equation <span>\\\\(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\\\\)</span>; (ii) <i>G</i> admits a <span>\\\\(P_{\\\\ge 2}\\\\)</span>-factor for <span>\\\\(n=7\\\\)</span> if <span>\\\\(\\\\eta _1(G)<\\\\frac{25+\\\\sqrt{161}}{2}\\\\)</span>.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"98 3\",\"pages\":\"727 - 737\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01075-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01075-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 G 是阶数为 n 的连通图,其中 n 为正整数。如果 F 的每个分量都是阶数至少为 2 的路径,那么 G 的一个遍历子图 F 称为路径因子。路径因子指的是每个分量的阶数至少为 k 的路径因子(\(k\ge 2\))。G的距离矩阵\({\mathcal {D}}(G)\) 是一个 \(n\times n\) 实对称矩阵,其(i, j)项是顶点\(v_i\) 和 \(v_j\)之间的距离。G 的距离无符号拉普拉斯矩阵({\mathcal {Q}}(G)\) 由 \({\mathcal {Q}}(G)=Tr(G)+{\mathcal {D}}(G)\) 定义,其中 Tr(G) 是 G 中顶点传输的对角矩阵。\({\mathcal {Q}}(G)\) 的最大特征值 \(eta _1(G)\) 被称为 G 的无符号拉普拉斯谱半径。本文旨在提出一个无距离符号的拉普拉斯谱半径条件,以保证图中存在一个 (P_{\ge 2}\)因子,并声称以下陈述为真:(i) 如果 \(\eta _1(G)<;\其中 \(\theta (n)\) 是方程 \(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\) 的最大根;(ii) 如果(\eta _1(G)<\frac{25+\sqrt{161}}{2}\),那么 G 对于(n=7)有一个(P_{ge 2}\)因子。
Distance signless Laplacian spectral radius for the existence of path-factors in graphs
Let G be a connected graph of order n, where n is a positive integer. A spanning subgraph F of G is called a path-factor if every component of F is a path of order at least 2. A \(P_{\ge k}\)-factor means a path-factor in which every component admits order at least k (\(k\ge 2\)). The distance matrix \({\mathcal {D}}(G)\) of G is an \(n\times n\) real symmetric matrix whose (i, j)-entry is the distance between the vertices \(v_i\) and \(v_j\). The distance signless Laplacian matrix \({\mathcal {Q}}(G)\) of G is defined by \({\mathcal {Q}}(G)=Tr(G)+{\mathcal {D}}(G)\), where Tr(G) is the diagonal matrix of the vertex transmissions in G. The largest eigenvalue \(\eta _1(G)\) of \({\mathcal {Q}}(G)\) is called the distance signless Laplacian spectral radius of G. In this paper, we aim to present a distance signless Laplacian spectral radius condition to guarantee the existence of a \(P_{\ge 2}\)-factor in a graph and claim that the following statements are true: (i) G admits a \(P_{\ge 2}\)-factor for \(n\ge 4\) and \(n\ne 7\) if \(\eta _1(G)<\theta (n)\), where \(\theta (n)\) is the largest root of the equation \(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\); (ii) G admits a \(P_{\ge 2}\)-factor for \(n=7\) if \(\eta _1(G)<\frac{25+\sqrt{161}}{2}\).
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.