当 $$p\equiv 3$$$(\text {mod }4)$$ 是素数时,$$mathbb {Q}(\sqrt\{pm 2p})$$的类数的协整关系

Jigu Kim, Yoshinori Mizuno
{"title":"当 $$p\\equiv 3$$$(\\text {mod }4)$$ 是素数时,$$mathbb {Q}(\\sqrt\\{pm 2p})$$的类数的协整关系","authors":"Jigu Kim, Yoshinori Mizuno","doi":"10.1007/s11139-024-00863-0","DOIUrl":null,"url":null,"abstract":"<p>For a prime <span>\\(p\\equiv 3\\)</span> <span>\\((\\text {mod }4)\\)</span>, let <span>\\(h(-8p)\\)</span> and <i>h</i>(8<i>p</i>) be the class numbers of <span>\\(\\mathbb {Q}(\\sqrt{-2p})\\)</span> and <span>\\(\\mathbb {Q}(\\sqrt{2p})\\)</span>, respectively. Let <span>\\(\\Psi (\\xi )\\)</span> be the Hirzebruch sum of a quadratic irrational <span>\\(\\xi \\)</span>. We show that <span>\\(h(-8p)\\equiv h(8p)\\Big (\\Psi (2\\sqrt{2p})/3-\\Psi (\\frac{1+\\sqrt{2p}}{2})/3\\Big )\\)</span> <span>\\((\\text {mod }16)\\)</span>. Also, we show that <span>\\(h(-8p)\\equiv 2\\,h(8p)\\Psi (2\\sqrt{2p})/3\\)</span> <span>\\((\\text {mod }8)\\)</span> if <span>\\(p\\equiv 3\\)</span> <span>\\((\\text {mod }8)\\)</span>, and <span>\\(h(-8p)\\equiv \\big (2\\,h(8p)\\Psi (2\\sqrt{2p})/3\\big )+4\\)</span> <span>\\((\\text {mod }8)\\)</span> if <span>\\(p\\equiv 7\\)</span> <span>\\((\\text {mod }8)\\)</span>.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congruences for class numbers of $$\\\\mathbb {Q}(\\\\sqrt{\\\\pm 2p})$$ when $$p\\\\equiv 3$$ $$(\\\\text {mod }4)$$ is prime\",\"authors\":\"Jigu Kim, Yoshinori Mizuno\",\"doi\":\"10.1007/s11139-024-00863-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a prime <span>\\\\(p\\\\equiv 3\\\\)</span> <span>\\\\((\\\\text {mod }4)\\\\)</span>, let <span>\\\\(h(-8p)\\\\)</span> and <i>h</i>(8<i>p</i>) be the class numbers of <span>\\\\(\\\\mathbb {Q}(\\\\sqrt{-2p})\\\\)</span> and <span>\\\\(\\\\mathbb {Q}(\\\\sqrt{2p})\\\\)</span>, respectively. Let <span>\\\\(\\\\Psi (\\\\xi )\\\\)</span> be the Hirzebruch sum of a quadratic irrational <span>\\\\(\\\\xi \\\\)</span>. We show that <span>\\\\(h(-8p)\\\\equiv h(8p)\\\\Big (\\\\Psi (2\\\\sqrt{2p})/3-\\\\Psi (\\\\frac{1+\\\\sqrt{2p}}{2})/3\\\\Big )\\\\)</span> <span>\\\\((\\\\text {mod }16)\\\\)</span>. Also, we show that <span>\\\\(h(-8p)\\\\equiv 2\\\\,h(8p)\\\\Psi (2\\\\sqrt{2p})/3\\\\)</span> <span>\\\\((\\\\text {mod }8)\\\\)</span> if <span>\\\\(p\\\\equiv 3\\\\)</span> <span>\\\\((\\\\text {mod }8)\\\\)</span>, and <span>\\\\(h(-8p)\\\\equiv \\\\big (2\\\\,h(8p)\\\\Psi (2\\\\sqrt{2p})/3\\\\big )+4\\\\)</span> <span>\\\\((\\\\text {mod }8)\\\\)</span> if <span>\\\\(p\\\\equiv 7\\\\)</span> <span>\\\\((\\\\text {mod }8)\\\\)</span>.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00863-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00863-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个质数(((\text {mod }4)),让(h(-8p))和(h(8p))分别是(\mathbb {Q}(\sqrt{-2p})\) 和(\mathbb {Q}(\sqrt{2p})\) 的类数。让 \(\Psi (\xi )\) 是二次无理数 \(\xi \) 的希尔泽布吕赫和。我们证明了(h(-8p)equiv h(8p)\Big (\Psi (2\sqrt{2p})/3-\Psi (\frac{1+\sqrt{2p}}{2})/3\Big )\)\(\text {mod }16)\).另外,我们还证明了(h(-8p)equiv 2\,h(8p)\Psi (2\sqrt{2p})/3\)\如果 \(pequiv 3\) \((\text{mod }8)\),並且 \(h(-8p)equiv \big (2\,h(8p)\Psi (2\sqrt{2p})/3\big )+4\)\((\text {mod }8)\) if \(p\equiv 7\) \((\text {mod }8)\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Congruences for class numbers of $$\mathbb {Q}(\sqrt{\pm 2p})$$ when $$p\equiv 3$$ $$(\text {mod }4)$$ is prime

For a prime \(p\equiv 3\) \((\text {mod }4)\), let \(h(-8p)\) and h(8p) be the class numbers of \(\mathbb {Q}(\sqrt{-2p})\) and \(\mathbb {Q}(\sqrt{2p})\), respectively. Let \(\Psi (\xi )\) be the Hirzebruch sum of a quadratic irrational \(\xi \). We show that \(h(-8p)\equiv h(8p)\Big (\Psi (2\sqrt{2p})/3-\Psi (\frac{1+\sqrt{2p}}{2})/3\Big )\) \((\text {mod }16)\). Also, we show that \(h(-8p)\equiv 2\,h(8p)\Psi (2\sqrt{2p})/3\) \((\text {mod }8)\) if \(p\equiv 3\) \((\text {mod }8)\), and \(h(-8p)\equiv \big (2\,h(8p)\Psi (2\sqrt{2p})/3\big )+4\) \((\text {mod }8)\) if \(p\equiv 7\) \((\text {mod }8)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信