线性和局部无势衍生的中心点

Pub Date : 2023-12-11 DOI:10.1007/s11253-023-02255-x
Leonid Bedratyuk, Anatolii Petravchuk, Evhen Chapovskyi
{"title":"线性和局部无势衍生的中心点","authors":"Leonid Bedratyuk, Anatolii Petravchuk, Evhen Chapovskyi","doi":"10.1007/s11253-023-02255-x","DOIUrl":null,"url":null,"abstract":"<p>Let 𝕂 be an algebraically closed field of characteristic zero, let 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>] be the polynomial algebra, and let <i>W</i><sub><i>n</i></sub>(𝕂) be the Lie algebra of all 𝕂-derivations on 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>]<i>.</i> For any derivation <i>D</i> with linear components, we describe the centralizer of <i>D</i> in <i>W</i><sub><i>n</i></sub>(𝕂) and propose an algorithm for finding the generators of this centralizer regarded as a module over the ring of constants of the derivation <i>D</i> in the case where <i>D</i> is a basic Weitzenböck derivation. In a more general case where a finitely generated integral domain <i>A</i> over the field 𝕂 is considered instead of the polynomial algebra 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>] and <i>D</i> is a locally nilpotent derivation on <i>A,</i> we prove that the centralizer C<sub>Der<i>A</i></sub>(<i>D</i>) of <i>D</i> in the Lie algebra Der<i>A</i> of all 𝕂-derivations on <i>A</i> is a “large” subalgebra of Der <i>A.</i> Specifically, the rank of C<sub>Der<i>A</i></sub>(<i>D</i>) over <i>A</i> is equal to the transcendence degree of the field of fractions Frac(<i>A</i>) over the field 𝕂.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centralizers of Linear and Locally Nilpotent Derivations\",\"authors\":\"Leonid Bedratyuk, Anatolii Petravchuk, Evhen Chapovskyi\",\"doi\":\"10.1007/s11253-023-02255-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let 𝕂 be an algebraically closed field of characteristic zero, let 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>] be the polynomial algebra, and let <i>W</i><sub><i>n</i></sub>(𝕂) be the Lie algebra of all 𝕂-derivations on 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>]<i>.</i> For any derivation <i>D</i> with linear components, we describe the centralizer of <i>D</i> in <i>W</i><sub><i>n</i></sub>(𝕂) and propose an algorithm for finding the generators of this centralizer regarded as a module over the ring of constants of the derivation <i>D</i> in the case where <i>D</i> is a basic Weitzenböck derivation. In a more general case where a finitely generated integral domain <i>A</i> over the field 𝕂 is considered instead of the polynomial algebra 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>] and <i>D</i> is a locally nilpotent derivation on <i>A,</i> we prove that the centralizer C<sub>Der<i>A</i></sub>(<i>D</i>) of <i>D</i> in the Lie algebra Der<i>A</i> of all 𝕂-derivations on <i>A</i> is a “large” subalgebra of Der <i>A.</i> Specifically, the rank of C<sub>Der<i>A</i></sub>(<i>D</i>) over <i>A</i> is equal to the transcendence degree of the field of fractions Frac(<i>A</i>) over the field 𝕂.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02255-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02255-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设𝕂 是特征为零的代数闭域,设 𝕂[x1,...,xn]是多项式代数,设 Wn(𝕂) 是 𝕂[x1,...,xn]上所有 𝕂 派生的李代数。对于任何具有线性成分的导数 D,我们描述了 D 在 Wn(𝕂)中的中心子,并提出了一种算法,用于在 D 是基本魏岑伯克导数的情况下,将该中心子视为导数 D 的常量环上的模块,从而找到该中心子的生成子。在更一般的情况下,即考虑的是域𝕂上的有限生成积分域 A,而不是多项式代数𝕂[x1,...,xn],并且 D 是 A 上的局部零势导数,我们证明 D 在 A 上所有𝕂导数的李代数 DerA 中的中心子 CDerA(D) 是 Der A 的 "大 "子代数。具体地说,CDerA(D) 在 A 上的秩等于分数域 Frac(A) 在𝕂 上的超越度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Centralizers of Linear and Locally Nilpotent Derivations

Let 𝕂 be an algebraically closed field of characteristic zero, let 𝕂[x1,…,xn] be the polynomial algebra, and let Wn(𝕂) be the Lie algebra of all 𝕂-derivations on 𝕂[x1,…,xn]. For any derivation D with linear components, we describe the centralizer of D in Wn(𝕂) and propose an algorithm for finding the generators of this centralizer regarded as a module over the ring of constants of the derivation D in the case where D is a basic Weitzenböck derivation. In a more general case where a finitely generated integral domain A over the field 𝕂 is considered instead of the polynomial algebra 𝕂[x1,…,xn] and D is a locally nilpotent derivation on A, we prove that the centralizer CDerA(D) of D in the Lie algebra DerA of all 𝕂-derivations on A is a “large” subalgebra of Der A. Specifically, the rank of CDerA(D) over A is equal to the transcendence degree of the field of fractions Frac(A) over the field 𝕂.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信