Leonid Bedratyuk, Anatolii Petravchuk, Evhen Chapovskyi
{"title":"线性和局部无势衍生的中心点","authors":"Leonid Bedratyuk, Anatolii Petravchuk, Evhen Chapovskyi","doi":"10.1007/s11253-023-02255-x","DOIUrl":null,"url":null,"abstract":"<p>Let 𝕂 be an algebraically closed field of characteristic zero, let 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>] be the polynomial algebra, and let <i>W</i><sub><i>n</i></sub>(𝕂) be the Lie algebra of all 𝕂-derivations on 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>]<i>.</i> For any derivation <i>D</i> with linear components, we describe the centralizer of <i>D</i> in <i>W</i><sub><i>n</i></sub>(𝕂) and propose an algorithm for finding the generators of this centralizer regarded as a module over the ring of constants of the derivation <i>D</i> in the case where <i>D</i> is a basic Weitzenböck derivation. In a more general case where a finitely generated integral domain <i>A</i> over the field 𝕂 is considered instead of the polynomial algebra 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>] and <i>D</i> is a locally nilpotent derivation on <i>A,</i> we prove that the centralizer C<sub>Der<i>A</i></sub>(<i>D</i>) of <i>D</i> in the Lie algebra Der<i>A</i> of all 𝕂-derivations on <i>A</i> is a “large” subalgebra of Der <i>A.</i> Specifically, the rank of C<sub>Der<i>A</i></sub>(<i>D</i>) over <i>A</i> is equal to the transcendence degree of the field of fractions Frac(<i>A</i>) over the field 𝕂.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"46 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centralizers of Linear and Locally Nilpotent Derivations\",\"authors\":\"Leonid Bedratyuk, Anatolii Petravchuk, Evhen Chapovskyi\",\"doi\":\"10.1007/s11253-023-02255-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let 𝕂 be an algebraically closed field of characteristic zero, let 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>] be the polynomial algebra, and let <i>W</i><sub><i>n</i></sub>(𝕂) be the Lie algebra of all 𝕂-derivations on 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>]<i>.</i> For any derivation <i>D</i> with linear components, we describe the centralizer of <i>D</i> in <i>W</i><sub><i>n</i></sub>(𝕂) and propose an algorithm for finding the generators of this centralizer regarded as a module over the ring of constants of the derivation <i>D</i> in the case where <i>D</i> is a basic Weitzenböck derivation. In a more general case where a finitely generated integral domain <i>A</i> over the field 𝕂 is considered instead of the polynomial algebra 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>] and <i>D</i> is a locally nilpotent derivation on <i>A,</i> we prove that the centralizer C<sub>Der<i>A</i></sub>(<i>D</i>) of <i>D</i> in the Lie algebra Der<i>A</i> of all 𝕂-derivations on <i>A</i> is a “large” subalgebra of Der <i>A.</i> Specifically, the rank of C<sub>Der<i>A</i></sub>(<i>D</i>) over <i>A</i> is equal to the transcendence degree of the field of fractions Frac(<i>A</i>) over the field 𝕂.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02255-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02255-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设𝕂 是特征为零的代数闭域,设 𝕂[x1,...,xn]是多项式代数,设 Wn(𝕂) 是 𝕂[x1,...,xn]上所有 𝕂 派生的李代数。对于任何具有线性成分的导数 D,我们描述了 D 在 Wn(𝕂)中的中心子,并提出了一种算法,用于在 D 是基本魏岑伯克导数的情况下,将该中心子视为导数 D 的常量环上的模块,从而找到该中心子的生成子。在更一般的情况下,即考虑的是域𝕂上的有限生成积分域 A,而不是多项式代数𝕂[x1,...,xn],并且 D 是 A 上的局部零势导数,我们证明 D 在 A 上所有𝕂导数的李代数 DerA 中的中心子 CDerA(D) 是 Der A 的 "大 "子代数。具体地说,CDerA(D) 在 A 上的秩等于分数域 Frac(A) 在𝕂 上的超越度。
Centralizers of Linear and Locally Nilpotent Derivations
Let 𝕂 be an algebraically closed field of characteristic zero, let 𝕂[x1,…,xn] be the polynomial algebra, and let Wn(𝕂) be the Lie algebra of all 𝕂-derivations on 𝕂[x1,…,xn]. For any derivation D with linear components, we describe the centralizer of D in Wn(𝕂) and propose an algorithm for finding the generators of this centralizer regarded as a module over the ring of constants of the derivation D in the case where D is a basic Weitzenböck derivation. In a more general case where a finitely generated integral domain A over the field 𝕂 is considered instead of the polynomial algebra 𝕂[x1,…,xn] and D is a locally nilpotent derivation on A, we prove that the centralizer CDerA(D) of D in the Lie algebra DerA of all 𝕂-derivations on A is a “large” subalgebra of Der A. Specifically, the rank of CDerA(D) over A is equal to the transcendence degree of the field of fractions Frac(A) over the field 𝕂.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.