线性和局部无势衍生的中心点

IF 0.5 4区 数学 Q3 MATHEMATICS
Leonid Bedratyuk, Anatolii Petravchuk, Evhen Chapovskyi
{"title":"线性和局部无势衍生的中心点","authors":"Leonid Bedratyuk, Anatolii Petravchuk, Evhen Chapovskyi","doi":"10.1007/s11253-023-02255-x","DOIUrl":null,"url":null,"abstract":"<p>Let 𝕂 be an algebraically closed field of characteristic zero, let 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>] be the polynomial algebra, and let <i>W</i><sub><i>n</i></sub>(𝕂) be the Lie algebra of all 𝕂-derivations on 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>]<i>.</i> For any derivation <i>D</i> with linear components, we describe the centralizer of <i>D</i> in <i>W</i><sub><i>n</i></sub>(𝕂) and propose an algorithm for finding the generators of this centralizer regarded as a module over the ring of constants of the derivation <i>D</i> in the case where <i>D</i> is a basic Weitzenböck derivation. In a more general case where a finitely generated integral domain <i>A</i> over the field 𝕂 is considered instead of the polynomial algebra 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>] and <i>D</i> is a locally nilpotent derivation on <i>A,</i> we prove that the centralizer C<sub>Der<i>A</i></sub>(<i>D</i>) of <i>D</i> in the Lie algebra Der<i>A</i> of all 𝕂-derivations on <i>A</i> is a “large” subalgebra of Der <i>A.</i> Specifically, the rank of C<sub>Der<i>A</i></sub>(<i>D</i>) over <i>A</i> is equal to the transcendence degree of the field of fractions Frac(<i>A</i>) over the field 𝕂.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"46 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centralizers of Linear and Locally Nilpotent Derivations\",\"authors\":\"Leonid Bedratyuk, Anatolii Petravchuk, Evhen Chapovskyi\",\"doi\":\"10.1007/s11253-023-02255-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let 𝕂 be an algebraically closed field of characteristic zero, let 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>] be the polynomial algebra, and let <i>W</i><sub><i>n</i></sub>(𝕂) be the Lie algebra of all 𝕂-derivations on 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>]<i>.</i> For any derivation <i>D</i> with linear components, we describe the centralizer of <i>D</i> in <i>W</i><sub><i>n</i></sub>(𝕂) and propose an algorithm for finding the generators of this centralizer regarded as a module over the ring of constants of the derivation <i>D</i> in the case where <i>D</i> is a basic Weitzenböck derivation. In a more general case where a finitely generated integral domain <i>A</i> over the field 𝕂 is considered instead of the polynomial algebra 𝕂[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>] and <i>D</i> is a locally nilpotent derivation on <i>A,</i> we prove that the centralizer C<sub>Der<i>A</i></sub>(<i>D</i>) of <i>D</i> in the Lie algebra Der<i>A</i> of all 𝕂-derivations on <i>A</i> is a “large” subalgebra of Der <i>A.</i> Specifically, the rank of C<sub>Der<i>A</i></sub>(<i>D</i>) over <i>A</i> is equal to the transcendence degree of the field of fractions Frac(<i>A</i>) over the field 𝕂.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02255-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02255-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设𝕂 是特征为零的代数闭域,设 𝕂[x1,...,xn]是多项式代数,设 Wn(𝕂) 是 𝕂[x1,...,xn]上所有 𝕂 派生的李代数。对于任何具有线性成分的导数 D,我们描述了 D 在 Wn(𝕂)中的中心子,并提出了一种算法,用于在 D 是基本魏岑伯克导数的情况下,将该中心子视为导数 D 的常量环上的模块,从而找到该中心子的生成子。在更一般的情况下,即考虑的是域𝕂上的有限生成积分域 A,而不是多项式代数𝕂[x1,...,xn],并且 D 是 A 上的局部零势导数,我们证明 D 在 A 上所有𝕂导数的李代数 DerA 中的中心子 CDerA(D) 是 Der A 的 "大 "子代数。具体地说,CDerA(D) 在 A 上的秩等于分数域 Frac(A) 在𝕂 上的超越度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Centralizers of Linear and Locally Nilpotent Derivations

Let 𝕂 be an algebraically closed field of characteristic zero, let 𝕂[x1,…,xn] be the polynomial algebra, and let Wn(𝕂) be the Lie algebra of all 𝕂-derivations on 𝕂[x1,…,xn]. For any derivation D with linear components, we describe the centralizer of D in Wn(𝕂) and propose an algorithm for finding the generators of this centralizer regarded as a module over the ring of constants of the derivation D in the case where D is a basic Weitzenböck derivation. In a more general case where a finitely generated integral domain A over the field 𝕂 is considered instead of the polynomial algebra 𝕂[x1,…,xn] and D is a locally nilpotent derivation on A, we prove that the centralizer CDerA(D) of D in the Lie algebra DerA of all 𝕂-derivations on A is a “large” subalgebra of Der A. Specifically, the rank of CDerA(D) over A is equal to the transcendence degree of the field of fractions Frac(A) over the field 𝕂.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信