利用卷积神经网络估算 X 波段导航雷达的显著波高

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
M. A. Krinitskiy, V. A. Golikov, N. N. Anikin, A. I. Suslov, A. V. Gavrikov, N. D. Tilinina
{"title":"利用卷积神经网络估算 X 波段导航雷达的显著波高","authors":"M. A. Krinitskiy,&nbsp;V. A. Golikov,&nbsp;N. N. Anikin,&nbsp;A. I. Suslov,&nbsp;A. V. Gavrikov,&nbsp;N. D. Tilinina","doi":"10.3103/S0027134923070159","DOIUrl":null,"url":null,"abstract":"<p>Marine radars are vital for safe navigation at sea, detecting vessels and obstacles. Sea clutter, caused by Bragg scattering, is usually filtered out as noise. It becomes detectable in unfiltered radar images, acquired using SeaVision hardware package, when wind speed and wave height exceed certain thresholds. The parameters of wind-induced ocean waves can be determined using these images; however, traditional spectral methods for obtaining wave characteristics face limitations in improving accuracy. Deep learning techniques offer advantages in image processing tasks, being more robust and able to handle noisier data, yet delivering the results without Fourier transformations and not necessarily requiring long series of radar imagery. In our study, we present the method exploiting convolutional neural networks (CNNs) for estimating wave characteristics from shipborne radar data captured using SeaVision package. In particular, we train our CNN to infer significant wave height using estimates provided by the Spotter buoy as ground truth. Our CNN-based method has an advantage over the classical methods due to the low requirements for radar image data since we process just one SeaVision snapshot, whereas classical method requires more than 20 min of radar images.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"78 1 supplement","pages":"S128 - S137"},"PeriodicalIF":0.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Significant Wave Height from X-Band Navigation Radar Using Convolutional Neural Networks\",\"authors\":\"M. A. Krinitskiy,&nbsp;V. A. Golikov,&nbsp;N. N. Anikin,&nbsp;A. I. Suslov,&nbsp;A. V. Gavrikov,&nbsp;N. D. Tilinina\",\"doi\":\"10.3103/S0027134923070159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Marine radars are vital for safe navigation at sea, detecting vessels and obstacles. Sea clutter, caused by Bragg scattering, is usually filtered out as noise. It becomes detectable in unfiltered radar images, acquired using SeaVision hardware package, when wind speed and wave height exceed certain thresholds. The parameters of wind-induced ocean waves can be determined using these images; however, traditional spectral methods for obtaining wave characteristics face limitations in improving accuracy. Deep learning techniques offer advantages in image processing tasks, being more robust and able to handle noisier data, yet delivering the results without Fourier transformations and not necessarily requiring long series of radar imagery. In our study, we present the method exploiting convolutional neural networks (CNNs) for estimating wave characteristics from shipborne radar data captured using SeaVision package. In particular, we train our CNN to infer significant wave height using estimates provided by the Spotter buoy as ground truth. Our CNN-based method has an advantage over the classical methods due to the low requirements for radar image data since we process just one SeaVision snapshot, whereas classical method requires more than 20 min of radar images.</p>\",\"PeriodicalId\":711,\"journal\":{\"name\":\"Moscow University Physics Bulletin\",\"volume\":\"78 1 supplement\",\"pages\":\"S128 - S137\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Physics Bulletin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027134923070159\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134923070159","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 海洋雷达对于海上安全航行、探测船只和障碍物至关重要。由布拉格散射引起的海杂波通常作为噪声被过滤掉。当风速和波高超过一定临界值时,使用 SeaVision 硬件包获取的未滤波雷达图像中就会出现杂波。利用这些图像可以确定风引起的海浪的参数;然而,传统的光谱方法在获取海浪特征方面面临着提高精度的限制。深度学习技术在图像处理任务中具有优势,它更加稳健,能够处理噪声较大的数据,而且无需傅立叶变换就能得出结果,也不一定需要长序列的雷达图像。在我们的研究中,我们介绍了利用卷积神经网络(CNN)从 SeaVision 软件包捕获的船载雷达数据中估计波浪特征的方法。特别是,我们使用 Spotter 浮标提供的估计值作为地面实况,训练我们的 CNN 来推断显著波高。与传统方法相比,我们基于 CNN 的方法对雷达图像数据的要求较低,因为我们只需处理一次 SeaVision 快照,而传统方法则需要 20 分钟以上的雷达图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimating Significant Wave Height from X-Band Navigation Radar Using Convolutional Neural Networks

Estimating Significant Wave Height from X-Band Navigation Radar Using Convolutional Neural Networks

Estimating Significant Wave Height from X-Band Navigation Radar Using Convolutional Neural Networks

Marine radars are vital for safe navigation at sea, detecting vessels and obstacles. Sea clutter, caused by Bragg scattering, is usually filtered out as noise. It becomes detectable in unfiltered radar images, acquired using SeaVision hardware package, when wind speed and wave height exceed certain thresholds. The parameters of wind-induced ocean waves can be determined using these images; however, traditional spectral methods for obtaining wave characteristics face limitations in improving accuracy. Deep learning techniques offer advantages in image processing tasks, being more robust and able to handle noisier data, yet delivering the results without Fourier transformations and not necessarily requiring long series of radar imagery. In our study, we present the method exploiting convolutional neural networks (CNNs) for estimating wave characteristics from shipborne radar data captured using SeaVision package. In particular, we train our CNN to infer significant wave height using estimates provided by the Spotter buoy as ground truth. Our CNN-based method has an advantage over the classical methods due to the low requirements for radar image data since we process just one SeaVision snapshot, whereas classical method requires more than 20 min of radar images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信