具有局部过渡矩阵的概率蜂窝自动机:同步、遍历性和推理

Erhan Bayrakta, Fei Lu, Mauro Maggioni, Ruoyu Wu, Sichen Yang
{"title":"具有局部过渡矩阵的概率蜂窝自动机:同步、遍历性和推理","authors":"Erhan Bayrakta, Fei Lu, Mauro Maggioni, Ruoyu Wu, Sichen Yang","doi":"arxiv-2405.02928","DOIUrl":null,"url":null,"abstract":"We introduce a new class of probabilistic cellular automata that are capable\nof exhibiting rich dynamics such as synchronization and ergodicity and can be\neasily inferred from data. The system is a finite-state locally interacting\nMarkov chain on a circular graph. Each site's subsequent state is random, with\na distribution determined by its neighborhood's empirical distribution\nmultiplied by a local transition matrix. We establish sufficient and necessary\nconditions on the local transition matrix for synchronization and ergodicity.\nAlso, we introduce novel least squares estimators for inferring the local\ntransition matrix from various types of data, which may consist of either\nmultiple trajectories, a long trajectory, or ensemble sequences without\ntrajectory information. Under suitable identifiability conditions, we show the\nasymptotic normality of these estimators and provide non-asymptotic bounds for\ntheir accuracy.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic cellular automata with local transition matrices: synchronization, ergodicity, and inference\",\"authors\":\"Erhan Bayrakta, Fei Lu, Mauro Maggioni, Ruoyu Wu, Sichen Yang\",\"doi\":\"arxiv-2405.02928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new class of probabilistic cellular automata that are capable\\nof exhibiting rich dynamics such as synchronization and ergodicity and can be\\neasily inferred from data. The system is a finite-state locally interacting\\nMarkov chain on a circular graph. Each site's subsequent state is random, with\\na distribution determined by its neighborhood's empirical distribution\\nmultiplied by a local transition matrix. We establish sufficient and necessary\\nconditions on the local transition matrix for synchronization and ergodicity.\\nAlso, we introduce novel least squares estimators for inferring the local\\ntransition matrix from various types of data, which may consist of either\\nmultiple trajectories, a long trajectory, or ensemble sequences without\\ntrajectory information. Under suitable identifiability conditions, we show the\\nasymptotic normality of these estimators and provide non-asymptotic bounds for\\ntheir accuracy.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.02928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一类新的概率蜂窝自动机,它能够展示丰富的动力学特性,如同步性和遍历性,并且可以很容易地从数据中推断出来。该系统是环形图上的有限状态局部交互马尔可夫链。每个站点的后续状态都是随机的,其分布由其邻域的经验分布乘以局部转换矩阵决定。我们还引入了新的最小二乘估计器,用于从各种类型的数据中推断局部过渡矩阵,这些数据可能由多个轨迹、长轨迹或无轨迹信息的集合序列组成。在合适的可识别性条件下,我们证明了这些估计器的渐近正态性,并为其精度提供了非渐近边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic cellular automata with local transition matrices: synchronization, ergodicity, and inference
We introduce a new class of probabilistic cellular automata that are capable of exhibiting rich dynamics such as synchronization and ergodicity and can be easily inferred from data. The system is a finite-state locally interacting Markov chain on a circular graph. Each site's subsequent state is random, with a distribution determined by its neighborhood's empirical distribution multiplied by a local transition matrix. We establish sufficient and necessary conditions on the local transition matrix for synchronization and ergodicity. Also, we introduce novel least squares estimators for inferring the local transition matrix from various types of data, which may consist of either multiple trajectories, a long trajectory, or ensemble sequences without trajectory information. Under suitable identifiability conditions, we show the asymptotic normality of these estimators and provide non-asymptotic bounds for their accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信