{"title":"巴纳奇值 U$ 统计量的偏差和矩不等式","authors":"Davide GiraudoIRMA, UNISTRA UFR MI","doi":"arxiv-2405.01902","DOIUrl":null,"url":null,"abstract":"We show a deviation inequality for U-statistics of independent data taking\nvalues in a separable Banach space which satisfies some smoothness assumptions.\nWe then provide applications to rates in the law of large numbers for\nU-statistics, a H{\\\"o}lderian functional central limit theorem and a moment\ninequality for incomplete $U$-statistics.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deviation and moment inequalities for Banach-valued $U$-statistics\",\"authors\":\"Davide GiraudoIRMA, UNISTRA UFR MI\",\"doi\":\"arxiv-2405.01902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show a deviation inequality for U-statistics of independent data taking\\nvalues in a separable Banach space which satisfies some smoothness assumptions.\\nWe then provide applications to rates in the law of large numbers for\\nU-statistics, a H{\\\\\\\"o}lderian functional central limit theorem and a moment\\ninequality for incomplete $U$-statistics.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.01902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.01902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们展示了独立数据在可分离巴拿赫空间取值的 U 统计量的偏差不等式,该不等式满足一些平稳性假设,然后我们提供了 U 统计量大数定律中的比率、H{\"o}lderian 函数中心极限定理和不完整 $U$ 统计量的矩量不等式的应用。
Deviation and moment inequalities for Banach-valued $U$-statistics
We show a deviation inequality for U-statistics of independent data taking
values in a separable Banach space which satisfies some smoothness assumptions.
We then provide applications to rates in the law of large numbers for
U-statistics, a H{\"o}lderian functional central limit theorem and a moment
inequality for incomplete $U$-statistics.