{"title":"受约束二次最小化问题中的费耶尔式迭代过程","authors":"V. V. Vasin","doi":"10.1134/s008154382306024x","DOIUrl":null,"url":null,"abstract":"<p>The paper presents an overview of methods for solving an ill-posed problem of constrained convex quadratic minimization based on the Fejér-type iterative methods, which widely use the ideas and approaches developed in the works of I. I. Eremin, the founder of the Ural research school of mathematical programming. Along with a problem statement of general form, we consider variants of the original problem with constraints in the form of systems of equalities and inequalities, which have numerous applications. In addition, particular formulations of the problem are investigated, including the problem of finding a metric projection and solving a linear program, which are of independent interest. A distinctive feature of these methods is that not only convergence but also stability with respect to errors in the input data are established for them; i.e., the methods generate regularizing algorithms in contrast to the direct methods, which do not have this property.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fejér-Type Iterative Processes in the Constrained Quadratic Minimization Problem\",\"authors\":\"V. V. Vasin\",\"doi\":\"10.1134/s008154382306024x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents an overview of methods for solving an ill-posed problem of constrained convex quadratic minimization based on the Fejér-type iterative methods, which widely use the ideas and approaches developed in the works of I. I. Eremin, the founder of the Ural research school of mathematical programming. Along with a problem statement of general form, we consider variants of the original problem with constraints in the form of systems of equalities and inequalities, which have numerous applications. In addition, particular formulations of the problem are investigated, including the problem of finding a metric projection and solving a linear program, which are of independent interest. A distinctive feature of these methods is that not only convergence but also stability with respect to errors in the input data are established for them; i.e., the methods generate regularizing algorithms in contrast to the direct methods, which do not have this property.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s008154382306024x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s008154382306024x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文概述了基于费杰尔迭代法的有约束凸二次型最小化问题的求解方法,这些方法广泛采用了乌拉尔数学程序设计研究学派创始人 I. I. 埃列明在其著作中提出的观点和方法。除了一般形式的问题陈述外,我们还考虑了原始问题的变体,其约束条件为等式和不等式系统,这些约束条件有很多应用。此外,我们还研究了问题的特殊形式,包括寻找度量投影和求解线性规划的问题,这些都是我们感兴趣的问题。这些方法的一个显著特点是,它们不仅具有收敛性,还具有相对于输入数据误差的稳定性;也就是说,这些方法产生了正则化算法,而直接方法则不具备这一特性。
Fejér-Type Iterative Processes in the Constrained Quadratic Minimization Problem
The paper presents an overview of methods for solving an ill-posed problem of constrained convex quadratic minimization based on the Fejér-type iterative methods, which widely use the ideas and approaches developed in the works of I. I. Eremin, the founder of the Ural research school of mathematical programming. Along with a problem statement of general form, we consider variants of the original problem with constraints in the form of systems of equalities and inequalities, which have numerous applications. In addition, particular formulations of the problem are investigated, including the problem of finding a metric projection and solving a linear program, which are of independent interest. A distinctive feature of these methods is that not only convergence but also stability with respect to errors in the input data are established for them; i.e., the methods generate regularizing algorithms in contrast to the direct methods, which do not have this property.