有界几何流形上非线性流的好求性

IF 0.6 3区 数学 Q3 MATHEMATICS
Eric Bahuaud, Christine Guenther, James Isenberg, Rafe Mazzeo
{"title":"有界几何流形上非线性流的好求性","authors":"Eric Bahuaud,&nbsp;Christine Guenther,&nbsp;James Isenberg,&nbsp;Rafe Mazzeo","doi":"10.1007/s10455-023-09940-x","DOIUrl":null,"url":null,"abstract":"<div><p>We present straightforward conditions which ensure that a strongly elliptic linear operator <i>L</i> generates an analytic semigroup on Hölder spaces on an arbitrary complete manifold of bounded geometry. This is done by establishing the equivalent property that <i>L</i> is ‘sectorial,’ a condition that specifies the decay of the resolvent <span>\\((\\lambda I - L)^{-1}\\)</span> as <span>\\(\\lambda \\)</span> diverges from the Hölder spectrum of <i>L</i>. A key step is that we prove existence of this resolvent if <span>\\(\\lambda \\)</span> is sufficiently large using a geometric microlocal version of the semiclassical pseudodifferential calculus. The properties of <i>L</i> and <span>\\(e^{-tL}\\)</span> we obtain can then be used to prove well-posedness of a wide class of nonlinear flows. We illustrate this by proving well-posedness on Hölder spaces of the flow associated with the ambient obstruction tensor on complete manifolds of bounded geometry. This new result for a higher-order flow on a noncompact manifold exhibits the broader applicability of our technique.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness of nonlinear flows on manifolds of bounded geometry\",\"authors\":\"Eric Bahuaud,&nbsp;Christine Guenther,&nbsp;James Isenberg,&nbsp;Rafe Mazzeo\",\"doi\":\"10.1007/s10455-023-09940-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present straightforward conditions which ensure that a strongly elliptic linear operator <i>L</i> generates an analytic semigroup on Hölder spaces on an arbitrary complete manifold of bounded geometry. This is done by establishing the equivalent property that <i>L</i> is ‘sectorial,’ a condition that specifies the decay of the resolvent <span>\\\\((\\\\lambda I - L)^{-1}\\\\)</span> as <span>\\\\(\\\\lambda \\\\)</span> diverges from the Hölder spectrum of <i>L</i>. A key step is that we prove existence of this resolvent if <span>\\\\(\\\\lambda \\\\)</span> is sufficiently large using a geometric microlocal version of the semiclassical pseudodifferential calculus. The properties of <i>L</i> and <span>\\\\(e^{-tL}\\\\)</span> we obtain can then be used to prove well-posedness of a wide class of nonlinear flows. We illustrate this by proving well-posedness on Hölder spaces of the flow associated with the ambient obstruction tensor on complete manifolds of bounded geometry. This new result for a higher-order flow on a noncompact manifold exhibits the broader applicability of our technique.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09940-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09940-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了直截了当的条件,确保强椭圆线性算子 L 在有界几何的任意完整流形上的霍尔德空间上生成一个解析半群。这是通过建立 L 是 "扇形 "的等价性质来实现的,这个条件规定了当 \(\lambda \) 从 L 的霍尔德谱发散时 \((\lambda I - L)^{-1}\) 的分解量的衰减。关键的一步是,如果 \(\lambda \) 足够大,我们使用半经典伪微分微积分的几何微局域版本来证明这个分解量的存在性。然后,我们得到的 L 和 \(e^{-tL}\) 的性质可以用来证明一大类非线性流的好求解性。我们通过证明与有界几何的完整流形上的环境阻碍张量相关的流在赫尔德空间上的好求性来说明这一点。非紧凑流形上高阶流的这一新结果展示了我们技术更广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness of nonlinear flows on manifolds of bounded geometry

We present straightforward conditions which ensure that a strongly elliptic linear operator L generates an analytic semigroup on Hölder spaces on an arbitrary complete manifold of bounded geometry. This is done by establishing the equivalent property that L is ‘sectorial,’ a condition that specifies the decay of the resolvent \((\lambda I - L)^{-1}\) as \(\lambda \) diverges from the Hölder spectrum of L. A key step is that we prove existence of this resolvent if \(\lambda \) is sufficiently large using a geometric microlocal version of the semiclassical pseudodifferential calculus. The properties of L and \(e^{-tL}\) we obtain can then be used to prove well-posedness of a wide class of nonlinear flows. We illustrate this by proving well-posedness on Hölder spaces of the flow associated with the ambient obstruction tensor on complete manifolds of bounded geometry. This new result for a higher-order flow on a noncompact manifold exhibits the broader applicability of our technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信