调整计量经济学中的参数选择

Denis Chetverikov
{"title":"调整计量经济学中的参数选择","authors":"Denis Chetverikov","doi":"arxiv-2405.03021","DOIUrl":null,"url":null,"abstract":"I review some of the main methods for selecting tuning parameters in\nnonparametric and $\\ell_1$-penalized estimation. For the nonparametric\nestimation, I consider the methods of Mallows, Stein, Lepski, cross-validation,\npenalization, and aggregation in the context of series estimation. For the\n$\\ell_1$-penalized estimation, I consider the methods based on the theory of\nself-normalized moderate deviations, bootstrap, Stein's unbiased risk\nestimation, and cross-validation in the context of Lasso estimation. I explain\nthe intuition behind each of the methods and discuss their comparative\nadvantages. I also give some extensions.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning parameter selection in econometrics\",\"authors\":\"Denis Chetverikov\",\"doi\":\"arxiv-2405.03021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I review some of the main methods for selecting tuning parameters in\\nnonparametric and $\\\\ell_1$-penalized estimation. For the nonparametric\\nestimation, I consider the methods of Mallows, Stein, Lepski, cross-validation,\\npenalization, and aggregation in the context of series estimation. For the\\n$\\\\ell_1$-penalized estimation, I consider the methods based on the theory of\\nself-normalized moderate deviations, bootstrap, Stein's unbiased risk\\nestimation, and cross-validation in the context of Lasso estimation. I explain\\nthe intuition behind each of the methods and discuss their comparative\\nadvantages. I also give some extensions.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.03021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我回顾了在非参数估计和 $\ell_1$ 惩罚估计中选择调整参数的一些主要方法。对于非参数估计,我考虑了 Mallows、Stein、Lepski、交叉验证、惩罚以及序列估计中的聚合等方法。对于$ell_1$-惩罚估计,我考虑了基于自归一化中等偏差理论的方法、bootstrap、Stein 的无偏风险估计以及 Lasso 估计背景下的交叉验证。我解释了每种方法背后的直觉,并讨论了它们的比较优势。我还给出了一些扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning parameter selection in econometrics
I review some of the main methods for selecting tuning parameters in nonparametric and $\ell_1$-penalized estimation. For the nonparametric estimation, I consider the methods of Mallows, Stein, Lepski, cross-validation, penalization, and aggregation in the context of series estimation. For the $\ell_1$-penalized estimation, I consider the methods based on the theory of self-normalized moderate deviations, bootstrap, Stein's unbiased risk estimation, and cross-validation in the context of Lasso estimation. I explain the intuition behind each of the methods and discuss their comparative advantages. I also give some extensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信