János Ágoston, Asztéria Almási, Dóra Pinczés, Réka Sáray, Katalin Salánki, László Palkovics
{"title":"匈牙利轻微花叶病毒分离物的生物学、系统发育和进化关系","authors":"János Ágoston, Asztéria Almási, Dóra Pinczés, Réka Sáray, Katalin Salánki, László Palkovics","doi":"10.1007/s42161-024-01661-9","DOIUrl":null,"url":null,"abstract":"<p>In Western Transdanubia in 2018 and in Central-Hungary in 2022 spiderwort plants showed flower breaking symptoms and mild mosaic on the foliage, which indicated a potential virus infection. One gram of symptomatic leaf sample was collected at both locations. Potyvirus-specific ELISA tests demonstrated potyvirus infection. To identify the virus species, potyvirus-specific RT-PCR was carried out on the samples. In both samples specific PCR products were detected and cloned into pGEM®-T Easy vector. The nucleotide sequences of the inserts were determined by Sanger sequencing. BLASTn searches on the complete coat protein region of both isolates demonstrated more than 99.87% identity with Tradescantia mild mosaic virus (TraMMV; accession number OL584375). Koch postulates were fulfilled by sap inoculating seed grown spiderwort plants. Phylogenetic analyses of the TraMMV coat protein sequences revealed two distinct evolutionary lineages: a tropical subgroup with at least 97.84% identity within the group and temperate subgroup with at least 98.97% identity within the group. One major difference between the subgroups was in the triplet responsible for vector transmission. The isolates belonging to the tropical subgroup had DAG triplets, while the temperate subgroup had NAG triplets. The difference in the triplets could be caused by natural diversification, directional selection or disruptive selection.</p><p><b>License</b>: CC BY-NC-ND</p>","PeriodicalId":16837,"journal":{"name":"Journal of Plant Pathology","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biology, phylogenetic and evolutionary relations of Tradescantia mild mosaic virus isolates from Hungary\",\"authors\":\"János Ágoston, Asztéria Almási, Dóra Pinczés, Réka Sáray, Katalin Salánki, László Palkovics\",\"doi\":\"10.1007/s42161-024-01661-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Western Transdanubia in 2018 and in Central-Hungary in 2022 spiderwort plants showed flower breaking symptoms and mild mosaic on the foliage, which indicated a potential virus infection. One gram of symptomatic leaf sample was collected at both locations. Potyvirus-specific ELISA tests demonstrated potyvirus infection. To identify the virus species, potyvirus-specific RT-PCR was carried out on the samples. In both samples specific PCR products were detected and cloned into pGEM®-T Easy vector. The nucleotide sequences of the inserts were determined by Sanger sequencing. BLASTn searches on the complete coat protein region of both isolates demonstrated more than 99.87% identity with Tradescantia mild mosaic virus (TraMMV; accession number OL584375). Koch postulates were fulfilled by sap inoculating seed grown spiderwort plants. Phylogenetic analyses of the TraMMV coat protein sequences revealed two distinct evolutionary lineages: a tropical subgroup with at least 97.84% identity within the group and temperate subgroup with at least 98.97% identity within the group. One major difference between the subgroups was in the triplet responsible for vector transmission. The isolates belonging to the tropical subgroup had DAG triplets, while the temperate subgroup had NAG triplets. The difference in the triplets could be caused by natural diversification, directional selection or disruptive selection.</p><p><b>License</b>: CC BY-NC-ND</p>\",\"PeriodicalId\":16837,\"journal\":{\"name\":\"Journal of Plant Pathology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s42161-024-01661-9\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42161-024-01661-9","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Biology, phylogenetic and evolutionary relations of Tradescantia mild mosaic virus isolates from Hungary
In Western Transdanubia in 2018 and in Central-Hungary in 2022 spiderwort plants showed flower breaking symptoms and mild mosaic on the foliage, which indicated a potential virus infection. One gram of symptomatic leaf sample was collected at both locations. Potyvirus-specific ELISA tests demonstrated potyvirus infection. To identify the virus species, potyvirus-specific RT-PCR was carried out on the samples. In both samples specific PCR products were detected and cloned into pGEM®-T Easy vector. The nucleotide sequences of the inserts were determined by Sanger sequencing. BLASTn searches on the complete coat protein region of both isolates demonstrated more than 99.87% identity with Tradescantia mild mosaic virus (TraMMV; accession number OL584375). Koch postulates were fulfilled by sap inoculating seed grown spiderwort plants. Phylogenetic analyses of the TraMMV coat protein sequences revealed two distinct evolutionary lineages: a tropical subgroup with at least 97.84% identity within the group and temperate subgroup with at least 98.97% identity within the group. One major difference between the subgroups was in the triplet responsible for vector transmission. The isolates belonging to the tropical subgroup had DAG triplets, while the temperate subgroup had NAG triplets. The difference in the triplets could be caused by natural diversification, directional selection or disruptive selection.
期刊介绍:
The Journal of Plant Pathology (JPP or JPPY) is the main publication of the Italian Society of Plant Pathology (SiPAV), and publishes original contributions in the form of full-length papers, short communications, disease notes, and review articles on mycology, bacteriology, virology, phytoplasmatology, physiological plant pathology, plant-pathogeninteractions, post-harvest diseases, non-infectious diseases, and plant protection. In vivo results are required for plant protection submissions. Varietal trials for disease resistance and gene mapping are not published in the journal unless such findings are already employed in the context of strategic approaches for disease management. However, studies identifying actual genes involved in virulence are pertinent to thescope of the Journal and may be submitted. The journal highlights particularly timely or novel contributions in its Editors’ choice section, to appear at the beginning of each volume. Surveys for diseases or pathogens should be submitted as "Short communications".