Rita Maria Lopez Laphitz, María Verónica Arana, Santiago Agustín Varela, Leandro Aníbal Becker, Carolina Soliani, María Marta Azpilicueta, Paula Marchelli, Nicolás Bellora
{"title":"巴塔哥尼亚南方山毛榉对干旱胁迫的转录组反应","authors":"Rita Maria Lopez Laphitz, María Verónica Arana, Santiago Agustín Varela, Leandro Aníbal Becker, Carolina Soliani, María Marta Azpilicueta, Paula Marchelli, Nicolás Bellora","doi":"10.1186/s13717-024-00496-7","DOIUrl":null,"url":null,"abstract":"Deciphering the genetic architecture of drought tolerance could allow the candidate genes identification responding to water stress. In the Andean Patagonian forest, the genus Nothofagus represents an ecologically relevant species to be included in different genomic studies. These studies are scarce in South American ecosystems however represent an important source of genomic data in order to interpret future climate-change environment scenarios of these emblematic forests. Here, we achieved the assemblage of the transcriptome of N. alpina while searching for key genes of activated or suppressed metabolic pathways in response to drought stress. De novo transcriptome assembly resulted in 104,030 transcripts. Following confirmation of drought conditions, based on reduction of leaf water potential and stomatal conductance, a differential gene expression analysis resulted in 2720 significantly expressed genes (1601 up-regulated and 1119 down-regulated). Enrichment analysis (over-representation analysis and gene set enrichment analysis) resulted in more than one hundred stress-responsive term ontologies (i.e. biological processes) and pathways. Terms such as response to abscisic acid and pathways such as plant hormone signal transduction or starch and sucrose metabolism were over-represented. Protein–protein interaction assessment resulted in networks with significantly expressed top common hub gene clusters (e.g. plant-type cell wall biogenesis among down-regulated or ABA-signalling among up-regulated). These networks evidenced important regulators at gene expression such as transcriptional factors. Responses of N. alpina seedlings to drought stress were evidenced by the activation of several genes linked to GO biological processes and KEGG pathways, which were mainly based on over-expression of specific protein kinases, phosphatases, synthases and transcription factors. This suggests an up-regulation of signalling pathways, triggered through plant hormones such as abscisic acid or auxin, which could counteract the osmotic stress created as a probable immediate response to drought. On the other hand, groups of carbon fixation genes related to the galactose metabolism, photosynthesis, secondary wall biogenesis, and fatty acid biosynthesis degradation were down-regulated under drought. Overall, our results provide new genomic data for understanding how non-model long-lived trees of Patagonian forests would acclimate to environmental changes.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"114 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic responses to drought stress in the Patagonian southern beech Nothofagus alpina\",\"authors\":\"Rita Maria Lopez Laphitz, María Verónica Arana, Santiago Agustín Varela, Leandro Aníbal Becker, Carolina Soliani, María Marta Azpilicueta, Paula Marchelli, Nicolás Bellora\",\"doi\":\"10.1186/s13717-024-00496-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deciphering the genetic architecture of drought tolerance could allow the candidate genes identification responding to water stress. In the Andean Patagonian forest, the genus Nothofagus represents an ecologically relevant species to be included in different genomic studies. These studies are scarce in South American ecosystems however represent an important source of genomic data in order to interpret future climate-change environment scenarios of these emblematic forests. Here, we achieved the assemblage of the transcriptome of N. alpina while searching for key genes of activated or suppressed metabolic pathways in response to drought stress. De novo transcriptome assembly resulted in 104,030 transcripts. Following confirmation of drought conditions, based on reduction of leaf water potential and stomatal conductance, a differential gene expression analysis resulted in 2720 significantly expressed genes (1601 up-regulated and 1119 down-regulated). Enrichment analysis (over-representation analysis and gene set enrichment analysis) resulted in more than one hundred stress-responsive term ontologies (i.e. biological processes) and pathways. Terms such as response to abscisic acid and pathways such as plant hormone signal transduction or starch and sucrose metabolism were over-represented. Protein–protein interaction assessment resulted in networks with significantly expressed top common hub gene clusters (e.g. plant-type cell wall biogenesis among down-regulated or ABA-signalling among up-regulated). These networks evidenced important regulators at gene expression such as transcriptional factors. Responses of N. alpina seedlings to drought stress were evidenced by the activation of several genes linked to GO biological processes and KEGG pathways, which were mainly based on over-expression of specific protein kinases, phosphatases, synthases and transcription factors. This suggests an up-regulation of signalling pathways, triggered through plant hormones such as abscisic acid or auxin, which could counteract the osmotic stress created as a probable immediate response to drought. On the other hand, groups of carbon fixation genes related to the galactose metabolism, photosynthesis, secondary wall biogenesis, and fatty acid biosynthesis degradation were down-regulated under drought. Overall, our results provide new genomic data for understanding how non-model long-lived trees of Patagonian forests would acclimate to environmental changes.\",\"PeriodicalId\":11419,\"journal\":{\"name\":\"Ecological Processes\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Processes\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s13717-024-00496-7\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Processes","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s13717-024-00496-7","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
破译耐旱性的基因结构可以识别响应水胁迫的候选基因。在安第斯巴塔哥尼亚森林中,Nothofagus 属是与生态相关的物种,应纳入不同的基因组研究。这些研究在南美生态系统中很少见,但却是解读这些标志性森林未来气候变化环境情景的重要基因组数据来源。在这里,我们完成了阿尔卑斯山红豆杉(N. alpina)转录组的组装,同时寻找干旱胁迫下激活或抑制代谢途径的关键基因。从头开始的转录本组组装产生了 104,030 个转录本。根据叶片水势和气孔导度的降低确认干旱条件后,差异基因表达分析得出了 2720 个显著表达的基因(1601 个上调,1119 个下调)。富集分析(过度呈现分析和基因组富集分析)得出了一百多个胁迫响应术语本体(即生物过程)和通路。对脱落酸的反应等术语和植物激素信号转导或淀粉和蔗糖代谢等途径的代表性过高。蛋白质-蛋白质相互作用评估产生了具有显著表达的顶级共同中心基因簇网络(例如,下调的植物类型细胞壁生物发生或上调的 ABA 信号转导)。这些网络证明了基因表达的重要调节因子,如转录因子。N. alpina幼苗对干旱胁迫的反应表现为与 GO 生物过程和 KEGG 通路相关的多个基因被激活,这些基因主要基于特定蛋白激酶、磷酸酶、合成酶和转录因子的过度表达。这表明,通过脱落酸或辅酶等植物激素触发的信号通路上调,可以抵消可能对干旱做出直接反应而产生的渗透胁迫。另一方面,与半乳糖代谢、光合作用、次生壁生物生成和脂肪酸生物合成降解有关的碳固定基因组在干旱条件下下调。总之,我们的研究结果为了解巴塔哥尼亚森林中的非模式长寿树如何适应环境变化提供了新的基因组数据。
Transcriptomic responses to drought stress in the Patagonian southern beech Nothofagus alpina
Deciphering the genetic architecture of drought tolerance could allow the candidate genes identification responding to water stress. In the Andean Patagonian forest, the genus Nothofagus represents an ecologically relevant species to be included in different genomic studies. These studies are scarce in South American ecosystems however represent an important source of genomic data in order to interpret future climate-change environment scenarios of these emblematic forests. Here, we achieved the assemblage of the transcriptome of N. alpina while searching for key genes of activated or suppressed metabolic pathways in response to drought stress. De novo transcriptome assembly resulted in 104,030 transcripts. Following confirmation of drought conditions, based on reduction of leaf water potential and stomatal conductance, a differential gene expression analysis resulted in 2720 significantly expressed genes (1601 up-regulated and 1119 down-regulated). Enrichment analysis (over-representation analysis and gene set enrichment analysis) resulted in more than one hundred stress-responsive term ontologies (i.e. biological processes) and pathways. Terms such as response to abscisic acid and pathways such as plant hormone signal transduction or starch and sucrose metabolism were over-represented. Protein–protein interaction assessment resulted in networks with significantly expressed top common hub gene clusters (e.g. plant-type cell wall biogenesis among down-regulated or ABA-signalling among up-regulated). These networks evidenced important regulators at gene expression such as transcriptional factors. Responses of N. alpina seedlings to drought stress were evidenced by the activation of several genes linked to GO biological processes and KEGG pathways, which were mainly based on over-expression of specific protein kinases, phosphatases, synthases and transcription factors. This suggests an up-regulation of signalling pathways, triggered through plant hormones such as abscisic acid or auxin, which could counteract the osmotic stress created as a probable immediate response to drought. On the other hand, groups of carbon fixation genes related to the galactose metabolism, photosynthesis, secondary wall biogenesis, and fatty acid biosynthesis degradation were down-regulated under drought. Overall, our results provide new genomic data for understanding how non-model long-lived trees of Patagonian forests would acclimate to environmental changes.
期刊介绍:
Ecological Processes is an international, peer-reviewed, open access journal devoted to quality publications in ecological studies with a focus on the underlying processes responsible for the dynamics and functions of ecological systems at multiple spatial and temporal scales. The journal welcomes manuscripts on techniques, approaches, concepts, models, reviews, syntheses, short communications and applied research for advancing our knowledge and capability toward sustainability of ecosystems and the environment. Integrations of ecological and socio-economic processes are strongly encouraged.