{"title":"黎曼-刘维尔分数延迟微分系统的相对可控性和海尔-乌兰稳定性","authors":"Wangmin An, Danfeng Luo, Jizhao Huang","doi":"10.1007/s12346-024-01046-4","DOIUrl":null,"url":null,"abstract":"<p>In this work, we focus on the relative controllability and Hyers–Ulam stability of Riemann–Liouville fractional delay differential system of order <span>\\(\\alpha \\in (1,2)\\)</span>. Firstly, for the linear system based on Mittag-Laffler matrix function, we define a controllability Grammian matrix to judge whether the system is relatively controllable. Additionally, with the aid of Krasnoselskii’s fixed point theorem, sufficient conditions for the relative controllability of the corresponding semilinear system is also studied. Furthermore, we used Grönwall’s inequality to investigate Hyers–Ulam stability for Riemann–Liouville fractional semilinear delay differential equations. Lastly, three instances are provided to verify that our theoretical results are accurate.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"25 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative Controllability and Hyers–Ulam Stability of Riemann–Liouville Fractional Delay Differential System\",\"authors\":\"Wangmin An, Danfeng Luo, Jizhao Huang\",\"doi\":\"10.1007/s12346-024-01046-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we focus on the relative controllability and Hyers–Ulam stability of Riemann–Liouville fractional delay differential system of order <span>\\\\(\\\\alpha \\\\in (1,2)\\\\)</span>. Firstly, for the linear system based on Mittag-Laffler matrix function, we define a controllability Grammian matrix to judge whether the system is relatively controllable. Additionally, with the aid of Krasnoselskii’s fixed point theorem, sufficient conditions for the relative controllability of the corresponding semilinear system is also studied. Furthermore, we used Grönwall’s inequality to investigate Hyers–Ulam stability for Riemann–Liouville fractional semilinear delay differential equations. Lastly, three instances are provided to verify that our theoretical results are accurate.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01046-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01046-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Relative Controllability and Hyers–Ulam Stability of Riemann–Liouville Fractional Delay Differential System
In this work, we focus on the relative controllability and Hyers–Ulam stability of Riemann–Liouville fractional delay differential system of order \(\alpha \in (1,2)\). Firstly, for the linear system based on Mittag-Laffler matrix function, we define a controllability Grammian matrix to judge whether the system is relatively controllable. Additionally, with the aid of Krasnoselskii’s fixed point theorem, sufficient conditions for the relative controllability of the corresponding semilinear system is also studied. Furthermore, we used Grönwall’s inequality to investigate Hyers–Ulam stability for Riemann–Liouville fractional semilinear delay differential equations. Lastly, three instances are provided to verify that our theoretical results are accurate.
期刊介绍:
Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.