浅水区:通过 (2+1)-Dimensional Generalized Broer-Kaup System(2+1)维广义 Broer-Kaup 系统实现自贝克兰德、异贝克兰德和缩放变换

IF 1.9 3区 数学 Q1 MATHEMATICS
Xin-Yi Gao
{"title":"浅水区:通过 (2+1)-Dimensional Generalized Broer-Kaup System(2+1)维广义 Broer-Kaup 系统实现自贝克兰德、异贝克兰德和缩放变换","authors":"Xin-Yi Gao","doi":"10.1007/s12346-024-01025-9","DOIUrl":null,"url":null,"abstract":"<p>These days, watching the shallow water waves, people think about the nonlinear Broer-type models, e.g., a (2+1)-dimensional generalized Broer-Kaup system modeling, e.g., certain nonlinear long waves in the shallow water. For that system, with reference to, e.g., the wave height and wave horizontal velocity, this paper avails of symbolic computation to obtain (A) an auto-Bäcklund transformation with some solitons; (B) a group of the scaling transformations and (C) a group of the hetero-Bäcklund transformations, to a known linear partial differential equation, from that system. Results rely on the coefficients in that system</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"23 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In the Shallow Water: Auto-Bäcklund, Hetero-Bäcklund and Scaling Transformations via a (2+1)-Dimensional Generalized Broer-Kaup System\",\"authors\":\"Xin-Yi Gao\",\"doi\":\"10.1007/s12346-024-01025-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>These days, watching the shallow water waves, people think about the nonlinear Broer-type models, e.g., a (2+1)-dimensional generalized Broer-Kaup system modeling, e.g., certain nonlinear long waves in the shallow water. For that system, with reference to, e.g., the wave height and wave horizontal velocity, this paper avails of symbolic computation to obtain (A) an auto-Bäcklund transformation with some solitons; (B) a group of the scaling transformations and (C) a group of the hetero-Bäcklund transformations, to a known linear partial differential equation, from that system. Results rely on the coefficients in that system</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01025-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01025-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如今,人们在观察浅水波浪时,会想到非线性布罗尔(Broer)型模型,如模拟浅水中某些非线性长波的(2+1)维广义布罗尔-考普(Broer-Kaup)系统。对于该系统,参考波高和波的水平速度等因素,本文利用符号计算从该系统中获得:(A) 带有一些孤子的自贝克莱变换;(B) 一组缩放变换和 (C) 一组异贝克莱变换,并将其转换为已知的线性偏微分方程。结果取决于该系统中的系数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In the Shallow Water: Auto-Bäcklund, Hetero-Bäcklund and Scaling Transformations via a (2+1)-Dimensional Generalized Broer-Kaup System

These days, watching the shallow water waves, people think about the nonlinear Broer-type models, e.g., a (2+1)-dimensional generalized Broer-Kaup system modeling, e.g., certain nonlinear long waves in the shallow water. For that system, with reference to, e.g., the wave height and wave horizontal velocity, this paper avails of symbolic computation to obtain (A) an auto-Bäcklund transformation with some solitons; (B) a group of the scaling transformations and (C) a group of the hetero-Bäcklund transformations, to a known linear partial differential equation, from that system. Results rely on the coefficients in that system

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信