V. M. Krundyshev, G. A. Markov, M. O. Kalinin, P. V. Semyanov, A. G. Busygin
{"title":"基于分层时态记忆计算模型的工业物联网网络攻击检测","authors":"V. M. Krundyshev, G. A. Markov, M. O. Kalinin, P. V. Semyanov, A. G. Busygin","doi":"10.3103/S0146411623080114","DOIUrl":null,"url":null,"abstract":"<p>This study considers the problem of detecting network anomalies caused by computer attacks in the networks of the industrial Internet of things. To detect anomalies, a new method is proposed, built using a hierarchical temporal memory (HTM) computation model based on the neocortex model. An experimental study of the developed method of detecting computer attacks based on the HTM model showed the superiority of the developed solution over the LSTM analog. The developed prototype of the anomaly detection system provides continuous training on unlabeled data sets in real time, takes into account the current network context, and applies the accumulated experience by supporting the memory mechanism.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"57 8","pages":"1040 - 1046"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyberattack Detection in the Industrial Internet of Things Based on the Computation Model of Hierarchical Temporal Memory\",\"authors\":\"V. M. Krundyshev, G. A. Markov, M. O. Kalinin, P. V. Semyanov, A. G. Busygin\",\"doi\":\"10.3103/S0146411623080114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study considers the problem of detecting network anomalies caused by computer attacks in the networks of the industrial Internet of things. To detect anomalies, a new method is proposed, built using a hierarchical temporal memory (HTM) computation model based on the neocortex model. An experimental study of the developed method of detecting computer attacks based on the HTM model showed the superiority of the developed solution over the LSTM analog. The developed prototype of the anomaly detection system provides continuous training on unlabeled data sets in real time, takes into account the current network context, and applies the accumulated experience by supporting the memory mechanism.</p>\",\"PeriodicalId\":46238,\"journal\":{\"name\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"volume\":\"57 8\",\"pages\":\"1040 - 1046\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0146411623080114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411623080114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Cyberattack Detection in the Industrial Internet of Things Based on the Computation Model of Hierarchical Temporal Memory
This study considers the problem of detecting network anomalies caused by computer attacks in the networks of the industrial Internet of things. To detect anomalies, a new method is proposed, built using a hierarchical temporal memory (HTM) computation model based on the neocortex model. An experimental study of the developed method of detecting computer attacks based on the HTM model showed the superiority of the developed solution over the LSTM analog. The developed prototype of the anomaly detection system provides continuous training on unlabeled data sets in real time, takes into account the current network context, and applies the accumulated experience by supporting the memory mechanism.
期刊介绍:
Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision