基于分层时态记忆计算模型的工业物联网网络攻击检测

IF 0.6 Q4 AUTOMATION & CONTROL SYSTEMS
V. M. Krundyshev, G. A. Markov, M. O. Kalinin, P. V. Semyanov, A. G. Busygin
{"title":"基于分层时态记忆计算模型的工业物联网网络攻击检测","authors":"V. M. Krundyshev,&nbsp;G. A. Markov,&nbsp;M. O. Kalinin,&nbsp;P. V. Semyanov,&nbsp;A. G. Busygin","doi":"10.3103/S0146411623080114","DOIUrl":null,"url":null,"abstract":"<p>This study considers the problem of detecting network anomalies caused by computer attacks in the networks of the industrial Internet of things. To detect anomalies, a new method is proposed, built using a hierarchical temporal memory (HTM) computation model based on the neocortex model. An experimental study of the developed method of detecting computer attacks based on the HTM model showed the superiority of the developed solution over the LSTM analog. The developed prototype of the anomaly detection system provides continuous training on unlabeled data sets in real time, takes into account the current network context, and applies the accumulated experience by supporting the memory mechanism.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"57 8","pages":"1040 - 1046"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyberattack Detection in the Industrial Internet of Things Based on the Computation Model of Hierarchical Temporal Memory\",\"authors\":\"V. M. Krundyshev,&nbsp;G. A. Markov,&nbsp;M. O. Kalinin,&nbsp;P. V. Semyanov,&nbsp;A. G. Busygin\",\"doi\":\"10.3103/S0146411623080114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study considers the problem of detecting network anomalies caused by computer attacks in the networks of the industrial Internet of things. To detect anomalies, a new method is proposed, built using a hierarchical temporal memory (HTM) computation model based on the neocortex model. An experimental study of the developed method of detecting computer attacks based on the HTM model showed the superiority of the developed solution over the LSTM analog. The developed prototype of the anomaly detection system provides continuous training on unlabeled data sets in real time, takes into account the current network context, and applies the accumulated experience by supporting the memory mechanism.</p>\",\"PeriodicalId\":46238,\"journal\":{\"name\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"volume\":\"57 8\",\"pages\":\"1040 - 1046\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0146411623080114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411623080114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究探讨了在工业物联网网络中检测计算机攻击导致的网络异常的问题。为了检测异常情况,本文提出了一种新方法,该方法采用基于新皮层模型的分层时间记忆(HTM)计算模型。对所开发的基于 HTM 模型的计算机攻击检测方法进行的实验研究表明,所开发的解决方案优于 LSTM 模拟方案。所开发的异常检测系统原型可在无标记数据集上实时提供持续训练,考虑当前网络环境,并通过支持记忆机制应用所积累的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cyberattack Detection in the Industrial Internet of Things Based on the Computation Model of Hierarchical Temporal Memory

Cyberattack Detection in the Industrial Internet of Things Based on the Computation Model of Hierarchical Temporal Memory

Cyberattack Detection in the Industrial Internet of Things Based on the Computation Model of Hierarchical Temporal Memory

This study considers the problem of detecting network anomalies caused by computer attacks in the networks of the industrial Internet of things. To detect anomalies, a new method is proposed, built using a hierarchical temporal memory (HTM) computation model based on the neocortex model. An experimental study of the developed method of detecting computer attacks based on the HTM model showed the superiority of the developed solution over the LSTM analog. The developed prototype of the anomaly detection system provides continuous training on unlabeled data sets in real time, takes into account the current network context, and applies the accumulated experience by supporting the memory mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUTOMATIC CONTROL AND COMPUTER SCIENCES
AUTOMATIC CONTROL AND COMPUTER SCIENCES AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.70
自引率
22.20%
发文量
47
期刊介绍: Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信