求解牛顿型非局部线性微分方程模型

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2024-05-03 DOI:10.1007/s12043-024-02765-8
Wen-Xiu Ma
{"title":"求解牛顿型非局部线性微分方程模型","authors":"Wen-Xiu Ma","doi":"10.1007/s12043-024-02765-8","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by recent studies on non-local integrable models, we consider a non-local inhomogeneous linear differential equation model of Newtonian type: </p><div><div><span>$$\\begin{aligned} \\hspace{42pt}x''(t)=\\lambda x(t)+\\mu x(-t) +f(t),\\ t\\in {\\mathbb {R}}, \\end{aligned}$$</span></div></div><p>where <span>\\(\\lambda \\)</span> and <span>\\(\\mu \\)</span> are real constants and <i>f</i> is continuous. Through decomposing functions into their even and odd parts, we transform the non-local model into a local model, and then with the classical ODE technique, solve the resulting local model under the even and odd constraints. The general solution involving two arbitrary constants is presented in nine cases of the coefficients.\n</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"98 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving a non-local linear differential equation model of the Newtonian-type\",\"authors\":\"Wen-Xiu Ma\",\"doi\":\"10.1007/s12043-024-02765-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Motivated by recent studies on non-local integrable models, we consider a non-local inhomogeneous linear differential equation model of Newtonian type: </p><div><div><span>$$\\\\begin{aligned} \\\\hspace{42pt}x''(t)=\\\\lambda x(t)+\\\\mu x(-t) +f(t),\\\\ t\\\\in {\\\\mathbb {R}}, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\lambda \\\\)</span> and <span>\\\\(\\\\mu \\\\)</span> are real constants and <i>f</i> is continuous. Through decomposing functions into their even and odd parts, we transform the non-local model into a local model, and then with the classical ODE technique, solve the resulting local model under the even and odd constraints. The general solution involving two arbitrary constants is presented in nine cases of the coefficients.\\n</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"98 2\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-024-02765-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02765-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

受最近关于非局部可积分模型研究的启发,我们考虑了牛顿类型的非局部非均质线性微分方程模型:$$\begin{aligned}.\hspace{42pt}x''(t)=\lambda x(t)+\mu x(-t) +f(t),\t\in {\mathbb {R}}, \end{aligned}$$其中\(\lambda\)和\(\mu\)是实常数,f是连续的。通过将函数分解为偶数部分和奇数部分,我们将非局部模型转化为局部模型,然后利用经典的 ODE 技术,在偶数和奇数约束条件下求解得到的局部模型。在系数的九种情况下,给出了涉及两个任意常数的一般解法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving a non-local linear differential equation model of the Newtonian-type

Motivated by recent studies on non-local integrable models, we consider a non-local inhomogeneous linear differential equation model of Newtonian type:

$$\begin{aligned} \hspace{42pt}x''(t)=\lambda x(t)+\mu x(-t) +f(t),\ t\in {\mathbb {R}}, \end{aligned}$$

where \(\lambda \) and \(\mu \) are real constants and f is continuous. Through decomposing functions into their even and odd parts, we transform the non-local model into a local model, and then with the classical ODE technique, solve the resulting local model under the even and odd constraints. The general solution involving two arbitrary constants is presented in nine cases of the coefficients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信