{"title":"KP 层次结构的新兴几何学","authors":"Jian Zhou","doi":"10.1007/s10114-024-1492-z","DOIUrl":null,"url":null,"abstract":"<div><p>We explain how to construct a quantum deformation of a spectral curve associated to a tau-function of the KP hierarchy. This construction is applied to Witten–Kontsevich tau-function to give a natural explanation of some earlier work. We also apply it to higher Weil–Petersson volumes and Witten’s r-spin intersection numbers.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergent Geometry of KP Hierarchy\",\"authors\":\"Jian Zhou\",\"doi\":\"10.1007/s10114-024-1492-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We explain how to construct a quantum deformation of a spectral curve associated to a tau-function of the KP hierarchy. This construction is applied to Witten–Kontsevich tau-function to give a natural explanation of some earlier work. We also apply it to higher Weil–Petersson volumes and Witten’s r-spin intersection numbers.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-1492-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-1492-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们解释了如何构建与 KP 层次的 tau 函数相关的谱曲线的量子变形。我们将这一构造应用于威滕-康采维奇 tau 函数,从而自然地解释了一些早期工作。我们还将其应用于更高的魏尔-彼得森卷和威滕的 r-旋交数。
We explain how to construct a quantum deformation of a spectral curve associated to a tau-function of the KP hierarchy. This construction is applied to Witten–Kontsevich tau-function to give a natural explanation of some earlier work. We also apply it to higher Weil–Petersson volumes and Witten’s r-spin intersection numbers.