{"title":"采用深度强化学习的全动态再订购策略,实现多货架库存管理","authors":"Patric Hammler, Nicolas Riesterer, Torsten Braun","doi":"10.1007/s00287-023-01556-6","DOIUrl":null,"url":null,"abstract":"<p>The operation of inventory systems plays an important role in the success of manufacturing companies, making it a highly relevant domain for optimization. In particular, the domain lends itself to being approached via Deep Reinforcement Learning (DRL) models due to it requiring sequential reorder decisions based on uncertainty to minimize cost. In this paper, we evaluate state-of-the-art optimization approaches to determine whether Deep Reinforcement Learning can be applied to the multi-echelon inventory optimization (MEIO) framework in a practically feasible manner to generate fully dynamic reorder policies. We investigate how it performs in comparison to an optimized static reorder policy, how robust it is when it comes to structural changes in the environment, and whether the use of DRL is safe in terms of risk in real-world applications. Our results show promising performance for DRL with potential for improvement in terms of minimizing risky behavior.</p>","PeriodicalId":39769,"journal":{"name":"Informatik-Spektrum","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully dynamic reorder policies with deep reinforcement learning for multi-echelon inventory management\",\"authors\":\"Patric Hammler, Nicolas Riesterer, Torsten Braun\",\"doi\":\"10.1007/s00287-023-01556-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The operation of inventory systems plays an important role in the success of manufacturing companies, making it a highly relevant domain for optimization. In particular, the domain lends itself to being approached via Deep Reinforcement Learning (DRL) models due to it requiring sequential reorder decisions based on uncertainty to minimize cost. In this paper, we evaluate state-of-the-art optimization approaches to determine whether Deep Reinforcement Learning can be applied to the multi-echelon inventory optimization (MEIO) framework in a practically feasible manner to generate fully dynamic reorder policies. We investigate how it performs in comparison to an optimized static reorder policy, how robust it is when it comes to structural changes in the environment, and whether the use of DRL is safe in terms of risk in real-world applications. Our results show promising performance for DRL with potential for improvement in terms of minimizing risky behavior.</p>\",\"PeriodicalId\":39769,\"journal\":{\"name\":\"Informatik-Spektrum\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatik-Spektrum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00287-023-01556-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatik-Spektrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00287-023-01556-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Fully dynamic reorder policies with deep reinforcement learning for multi-echelon inventory management
The operation of inventory systems plays an important role in the success of manufacturing companies, making it a highly relevant domain for optimization. In particular, the domain lends itself to being approached via Deep Reinforcement Learning (DRL) models due to it requiring sequential reorder decisions based on uncertainty to minimize cost. In this paper, we evaluate state-of-the-art optimization approaches to determine whether Deep Reinforcement Learning can be applied to the multi-echelon inventory optimization (MEIO) framework in a practically feasible manner to generate fully dynamic reorder policies. We investigate how it performs in comparison to an optimized static reorder policy, how robust it is when it comes to structural changes in the environment, and whether the use of DRL is safe in terms of risk in real-world applications. Our results show promising performance for DRL with potential for improvement in terms of minimizing risky behavior.
期刊介绍:
Im Informatik Spektrum finden Sie aktuelle, praktisch verwertbare Informationen über technische und wissenschaftliche Trends und Entwicklungen aus allen Bereichen der Informatik. Die Zeitschrift enthält Übersichtsartikel und einführende Darstellungen sowie Berichte über Projekte und Fallstudien aus der Praxis. Interviews, Kolumnen und Buchrezensionen runden das Angebot ab.Bilden Sie sich weiter, erschließen Sie sich neue Sachgebiete oder verschaffen Sie sich einen Überblick. Informatik Spektrum richtet sich neben Informatikspezialisten auch an Praktiker und Studierende, die Interesse an der wissenschaftlichen Entwicklung und praktischen Anwendung der Informatik haben.Möchten Sie zu einem Heft beitragen, richten Sie Ihren Vorschlag gerne an den Chefredakteur Peter Pagel (peter.pagel@springer.com). Willkommen sind Beiträge zum jeweiligen Schwerpunkt ebenso wie Beiträge zum gesamten Themenspektrum der Informatik.