采用深度强化学习的全动态再订购策略,实现多货架库存管理

Q4 Computer Science
Patric Hammler, Nicolas Riesterer, Torsten Braun
{"title":"采用深度强化学习的全动态再订购策略,实现多货架库存管理","authors":"Patric Hammler, Nicolas Riesterer, Torsten Braun","doi":"10.1007/s00287-023-01556-6","DOIUrl":null,"url":null,"abstract":"<p>The operation of inventory systems plays an important role in the success of manufacturing companies, making it a highly relevant domain for optimization. In particular, the domain lends itself to being approached via Deep Reinforcement Learning (DRL) models due to it requiring sequential reorder decisions based on uncertainty to minimize cost. In this paper, we evaluate state-of-the-art optimization approaches to determine whether Deep Reinforcement Learning can be applied to the multi-echelon inventory optimization (MEIO) framework in a practically feasible manner to generate fully dynamic reorder policies. We investigate how it performs in comparison to an optimized static reorder policy, how robust it is when it comes to structural changes in the environment, and whether the use of DRL is safe in terms of risk in real-world applications. Our results show promising performance for DRL with potential for improvement in terms of minimizing risky behavior.</p>","PeriodicalId":39769,"journal":{"name":"Informatik-Spektrum","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully dynamic reorder policies with deep reinforcement learning for multi-echelon inventory management\",\"authors\":\"Patric Hammler, Nicolas Riesterer, Torsten Braun\",\"doi\":\"10.1007/s00287-023-01556-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The operation of inventory systems plays an important role in the success of manufacturing companies, making it a highly relevant domain for optimization. In particular, the domain lends itself to being approached via Deep Reinforcement Learning (DRL) models due to it requiring sequential reorder decisions based on uncertainty to minimize cost. In this paper, we evaluate state-of-the-art optimization approaches to determine whether Deep Reinforcement Learning can be applied to the multi-echelon inventory optimization (MEIO) framework in a practically feasible manner to generate fully dynamic reorder policies. We investigate how it performs in comparison to an optimized static reorder policy, how robust it is when it comes to structural changes in the environment, and whether the use of DRL is safe in terms of risk in real-world applications. Our results show promising performance for DRL with potential for improvement in terms of minimizing risky behavior.</p>\",\"PeriodicalId\":39769,\"journal\":{\"name\":\"Informatik-Spektrum\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatik-Spektrum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00287-023-01556-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatik-Spektrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00287-023-01556-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

库存系统的运行对制造企业的成功起着重要作用,因此是一个与优化高度相关的领域。特别是,由于该领域需要根据不确定性做出连续的再订购决策,以最大限度地降低成本,因此适合采用深度强化学习(DRL)模型。在本文中,我们对最先进的优化方法进行了评估,以确定深度强化学习能否以实际可行的方式应用于多货架库存优化(MEIO)框架,从而生成完全动态的再订购策略。我们研究了它与优化后的静态重新排序策略相比的性能如何,在环境发生结构性变化时的鲁棒性如何,以及在实际应用中使用 DRL 的风险是否安全。我们的研究结果表明,DRL 的性能很有希望,在最大限度减少风险行为方面还有改进的余地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fully dynamic reorder policies with deep reinforcement learning for multi-echelon inventory management

Fully dynamic reorder policies with deep reinforcement learning for multi-echelon inventory management

The operation of inventory systems plays an important role in the success of manufacturing companies, making it a highly relevant domain for optimization. In particular, the domain lends itself to being approached via Deep Reinforcement Learning (DRL) models due to it requiring sequential reorder decisions based on uncertainty to minimize cost. In this paper, we evaluate state-of-the-art optimization approaches to determine whether Deep Reinforcement Learning can be applied to the multi-echelon inventory optimization (MEIO) framework in a practically feasible manner to generate fully dynamic reorder policies. We investigate how it performs in comparison to an optimized static reorder policy, how robust it is when it comes to structural changes in the environment, and whether the use of DRL is safe in terms of risk in real-world applications. Our results show promising performance for DRL with potential for improvement in terms of minimizing risky behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatik-Spektrum
Informatik-Spektrum Computer Science-Computer Science Applications
CiteScore
1.10
自引率
0.00%
发文量
72
期刊介绍: Im Informatik Spektrum finden Sie aktuelle, praktisch verwertbare Informationen über technische und wissenschaftliche Trends und Entwicklungen aus allen Bereichen der Informatik. Die Zeitschrift enthält Übersichtsartikel und einführende Darstellungen sowie Berichte über Projekte und Fallstudien aus der Praxis. Interviews, Kolumnen und Buchrezensionen runden das Angebot ab.Bilden Sie sich weiter, erschließen Sie sich neue Sachgebiete oder verschaffen Sie sich einen Überblick. Informatik Spektrum richtet sich neben Informatikspezialisten auch an Praktiker und Studierende, die Interesse an der wissenschaftlichen Entwicklung und praktischen  Anwendung der Informatik haben.Möchten Sie zu einem Heft beitragen, richten Sie Ihren Vorschlag gerne an den Chefredakteur Peter Pagel (peter.pagel@springer.com). Willkommen sind Beiträge zum jeweiligen Schwerpunkt ebenso wie Beiträge zum gesamten Themenspektrum der Informatik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信