一类相互作用的分支量值扩散的田中公式和局部时间

Pub Date : 2023-12-08 DOI:10.1007/s10114-023-2308-2
Donald A. Dawson, Jean Vaillancourt, Hao Wang
{"title":"一类相互作用的分支量值扩散的田中公式和局部时间","authors":"Donald A. Dawson,&nbsp;Jean Vaillancourt,&nbsp;Hao Wang","doi":"10.1007/s10114-023-2308-2","DOIUrl":null,"url":null,"abstract":"<div><p>We construct superprocesses with dependent spatial motion (SDSMs) in Euclidean spaces ℝ<sup><i>d</i></sup> with <i>d</i> ≥ 1 and show that, even when they start at some unbounded initial positive Radon measure such as Lebesgue measure on ℝ<sup><i>d</i></sup>, their local times exist when <i>d</i> ≤ 3. A Tanaka formula of the local time is also derived.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tanaka Formula and Local Time for a Class of Interacting Branching Measure-valued Diffusions\",\"authors\":\"Donald A. Dawson,&nbsp;Jean Vaillancourt,&nbsp;Hao Wang\",\"doi\":\"10.1007/s10114-023-2308-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct superprocesses with dependent spatial motion (SDSMs) in Euclidean spaces ℝ<sup><i>d</i></sup> with <i>d</i> ≥ 1 and show that, even when they start at some unbounded initial positive Radon measure such as Lebesgue measure on ℝ<sup><i>d</i></sup>, their local times exist when <i>d</i> ≤ 3. A Tanaka formula of the local time is also derived.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-023-2308-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-023-2308-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了欧几里得空间ℝd中d≥1的依赖空间运动的超过程(SDSM),并证明了即使它们从某些无界的初始正Radon度量(如ℝd上的Lebesgue度量)开始,当d≤3时,它们的局部时间也是存在的。同时还推导出了局部时间的田中公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Tanaka Formula and Local Time for a Class of Interacting Branching Measure-valued Diffusions

We construct superprocesses with dependent spatial motion (SDSMs) in Euclidean spaces ℝd with d ≥ 1 and show that, even when they start at some unbounded initial positive Radon measure such as Lebesgue measure on ℝd, their local times exist when d ≤ 3. A Tanaka formula of the local time is also derived.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信