{"title":"一类相互作用的分支量值扩散的田中公式和局部时间","authors":"Donald A. Dawson, Jean Vaillancourt, Hao Wang","doi":"10.1007/s10114-023-2308-2","DOIUrl":null,"url":null,"abstract":"<div><p>We construct superprocesses with dependent spatial motion (SDSMs) in Euclidean spaces ℝ<sup><i>d</i></sup> with <i>d</i> ≥ 1 and show that, even when they start at some unbounded initial positive Radon measure such as Lebesgue measure on ℝ<sup><i>d</i></sup>, their local times exist when <i>d</i> ≤ 3. A Tanaka formula of the local time is also derived.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tanaka Formula and Local Time for a Class of Interacting Branching Measure-valued Diffusions\",\"authors\":\"Donald A. Dawson, Jean Vaillancourt, Hao Wang\",\"doi\":\"10.1007/s10114-023-2308-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct superprocesses with dependent spatial motion (SDSMs) in Euclidean spaces ℝ<sup><i>d</i></sup> with <i>d</i> ≥ 1 and show that, even when they start at some unbounded initial positive Radon measure such as Lebesgue measure on ℝ<sup><i>d</i></sup>, their local times exist when <i>d</i> ≤ 3. A Tanaka formula of the local time is also derived.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-023-2308-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-023-2308-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tanaka Formula and Local Time for a Class of Interacting Branching Measure-valued Diffusions
We construct superprocesses with dependent spatial motion (SDSMs) in Euclidean spaces ℝd with d ≥ 1 and show that, even when they start at some unbounded initial positive Radon measure such as Lebesgue measure on ℝd, their local times exist when d ≤ 3. A Tanaka formula of the local time is also derived.