ℙ[r]的轨道格罗莫夫-维滕理论的量子曲线和双线性费米子形式

IF 0.8 3区 数学 Q2 MATHEMATICS
Chong Yao Chen, Shuai Guo
{"title":"ℙ[r]的轨道格罗莫夫-维滕理论的量子曲线和双线性费米子形式","authors":"Chong Yao Chen,&nbsp;Shuai Guo","doi":"10.1007/s10114-024-1633-4","DOIUrl":null,"url":null,"abstract":"<div><p>We construct the quantum curve for the Baker–Akhiezer function of the orbifold Gromov–Witten theory of the weighted projective line ℙ[<i>r</i>]. Furthermore, we deduce the explicit bilinear Fermionic formula for the (stationary) Gromov–Witten potential via the lifting operator contructed from the Baker–Akhiezer function.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 1","pages":"43 - 80"},"PeriodicalIF":0.8000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Curve and Bilinear Fermionic Form for the Orbifold Gromov–Witten Theory of ℙ[r]\",\"authors\":\"Chong Yao Chen,&nbsp;Shuai Guo\",\"doi\":\"10.1007/s10114-024-1633-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct the quantum curve for the Baker–Akhiezer function of the orbifold Gromov–Witten theory of the weighted projective line ℙ[<i>r</i>]. Furthermore, we deduce the explicit bilinear Fermionic formula for the (stationary) Gromov–Witten potential via the lifting operator contructed from the Baker–Akhiezer function.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 1\",\"pages\":\"43 - 80\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-1633-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-1633-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了加权投影线ℙ[r]的轨道格罗莫夫-维滕理论的贝克-阿基泽函数的量子曲线。此外,我们还通过贝克-阿基泽函数构造的提升算子,推导出了(静止)格罗莫夫-维滕势能的显式双线性费米子公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Curve and Bilinear Fermionic Form for the Orbifold Gromov–Witten Theory of ℙ[r]

We construct the quantum curve for the Baker–Akhiezer function of the orbifold Gromov–Witten theory of the weighted projective line ℙ[r]. Furthermore, we deduce the explicit bilinear Fermionic formula for the (stationary) Gromov–Witten potential via the lifting operator contructed from the Baker–Akhiezer function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信