与趋化-消费模型弱解相关的最优控制

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
André Luiz Corrêa Vianna Filho, Francisco Guillén-González
{"title":"与趋化-消费模型弱解相关的最优控制","authors":"André Luiz Corrêa Vianna Filho,&nbsp;Francisco Guillén-González","doi":"10.1007/s00245-024-10109-6","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work we investigate an optimal control problem related to the following chemotaxis-consumption model in a bounded domain <span>\\(\\Omega \\subset {\\mathbb {R}}^3\\)</span>: </p><div><div><span>$$\\begin{aligned} \\partial _t u - \\Delta u = - \\nabla \\cdot (u \\nabla v), \\quad \\partial _t v - \\Delta v = - u^s v + f \\,v\\, 1_{\\Omega _c}, \\end{aligned}$$</span></div></div><p>with <span>\\(s \\ge 1\\)</span>, endowed with isolated boundary conditions and initial conditions for (<i>u</i>, <i>v</i>), being <i>u</i> the cell density, <i>v</i> the chemical concentration and <i>f</i> the control acting in the <i>v</i>-equation through the bilinear term <span>\\(f \\,v\\, 1_{\\Omega _c}\\)</span>, in a subdomain <span>\\(\\Omega _c \\subset \\Omega \\)</span>. We address the existence of optimal control restricted to a weak solution setting, where, in particular, uniqueness of state (<i>u</i>, <i>v</i>) given a control <i>f</i> is not clear. Then by considering weak solutions satisfying an adequate energy inequality, we prove the existence of optimal control subject to uniformly bounded controls. Finally, we discuss the relation between the considered control problem and two other related ones, where the existence of optimal solution can not be proved.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"89 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00245-024-10109-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimal Control Related to Weak Solutions of a Chemotaxis-Consumption Model\",\"authors\":\"André Luiz Corrêa Vianna Filho,&nbsp;Francisco Guillén-González\",\"doi\":\"10.1007/s00245-024-10109-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present work we investigate an optimal control problem related to the following chemotaxis-consumption model in a bounded domain <span>\\\\(\\\\Omega \\\\subset {\\\\mathbb {R}}^3\\\\)</span>: </p><div><div><span>$$\\\\begin{aligned} \\\\partial _t u - \\\\Delta u = - \\\\nabla \\\\cdot (u \\\\nabla v), \\\\quad \\\\partial _t v - \\\\Delta v = - u^s v + f \\\\,v\\\\, 1_{\\\\Omega _c}, \\\\end{aligned}$$</span></div></div><p>with <span>\\\\(s \\\\ge 1\\\\)</span>, endowed with isolated boundary conditions and initial conditions for (<i>u</i>, <i>v</i>), being <i>u</i> the cell density, <i>v</i> the chemical concentration and <i>f</i> the control acting in the <i>v</i>-equation through the bilinear term <span>\\\\(f \\\\,v\\\\, 1_{\\\\Omega _c}\\\\)</span>, in a subdomain <span>\\\\(\\\\Omega _c \\\\subset \\\\Omega \\\\)</span>. We address the existence of optimal control restricted to a weak solution setting, where, in particular, uniqueness of state (<i>u</i>, <i>v</i>) given a control <i>f</i> is not clear. Then by considering weak solutions satisfying an adequate energy inequality, we prove the existence of optimal control subject to uniformly bounded controls. Finally, we discuss the relation between the considered control problem and two other related ones, where the existence of optimal solution can not be proved.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"89 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00245-024-10109-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10109-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10109-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们研究了在有界域 \(\Omega \subset {\mathbb {R}}^3\) 中与以下趋化-消费模型相关的最优控制问题:$$\begin{aligned}\partial _t u - Delta u = - \nabla \cdot (u \nabla v), \quad partial _t v - Delta v = - u^s v + f \,v\, 1_{Omega _c}, \end{aligned}$$with \(s \ge 1\), endowed with isolated boundary conditions and initial conditions for (u. v)、v), 即 u 是细胞密度,v 是化学浓度,f 是通过双线性项 \(f\,v\, 1_{\Omega _c}\) 作用于 v 方程的控制,在一个子域 \(\Omega _c \子集 \Omega \)中。我们要解决的是最优控制的存在性问题,它受限于弱解设置,尤其是给定控制 f 的状态(u, v)的唯一性并不明确。然后,通过考虑满足适当能量不等式的弱解,我们证明了受均匀约束控制的最优控制的存在性。最后,我们讨论了所考虑的控制问题与其他两个相关问题之间的关系,在这两个问题中,最优解的存在性无法证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Control Related to Weak Solutions of a Chemotaxis-Consumption Model

In the present work we investigate an optimal control problem related to the following chemotaxis-consumption model in a bounded domain \(\Omega \subset {\mathbb {R}}^3\):

$$\begin{aligned} \partial _t u - \Delta u = - \nabla \cdot (u \nabla v), \quad \partial _t v - \Delta v = - u^s v + f \,v\, 1_{\Omega _c}, \end{aligned}$$

with \(s \ge 1\), endowed with isolated boundary conditions and initial conditions for (uv), being u the cell density, v the chemical concentration and f the control acting in the v-equation through the bilinear term \(f \,v\, 1_{\Omega _c}\), in a subdomain \(\Omega _c \subset \Omega \). We address the existence of optimal control restricted to a weak solution setting, where, in particular, uniqueness of state (uv) given a control f is not clear. Then by considering weak solutions satisfying an adequate energy inequality, we prove the existence of optimal control subject to uniformly bounded controls. Finally, we discuss the relation between the considered control problem and two other related ones, where the existence of optimal solution can not be proved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信