Linsi Lan;Junbo Wang;Zhi Li;Krishna Kant;Wanquan Liu
{"title":"FedREM:动态设备不可预测性指导下的联合学习","authors":"Linsi Lan;Junbo Wang;Zhi Li;Krishna Kant;Wanquan Liu","doi":"10.1109/TPDS.2024.3396133","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a promising distributed machine learning scheme where multiple clients collaborate by sharing a common learning model while maintaining their private data locally. It can be applied to a lot of applications, e.g., training an automatic driving system by the perception of multiple vehicles. However, some clients may join the training system dynamically, which affects the stability and accuracy of the learning system a IoT. Meanwhile, data heterogeneity in the FL system exacerbates the above problem further due to imbalanced data distribution. To solve the above problems, we propose a novel FL framework named FedREM (Retain-Expansion and Matching), which guides clients training models by two mechanisms. They are 1) a Retain-Expansion mechanism that can let clients perform local training and extract data characteristics automatically during the training and 2) a Matching mechanism that can ensure new clients quickly adapt to the global model based on matching their data characteristics and adjusting the model accordingly. Results of extensive experiments verify that our FedREM outperforms various baselines in terms of model accuracy, communication efficiency, and system robustness.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FedREM: Guided Federated Learning in the Presence of Dynamic Device Unpredictability\",\"authors\":\"Linsi Lan;Junbo Wang;Zhi Li;Krishna Kant;Wanquan Liu\",\"doi\":\"10.1109/TPDS.2024.3396133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) is a promising distributed machine learning scheme where multiple clients collaborate by sharing a common learning model while maintaining their private data locally. It can be applied to a lot of applications, e.g., training an automatic driving system by the perception of multiple vehicles. However, some clients may join the training system dynamically, which affects the stability and accuracy of the learning system a IoT. Meanwhile, data heterogeneity in the FL system exacerbates the above problem further due to imbalanced data distribution. To solve the above problems, we propose a novel FL framework named FedREM (Retain-Expansion and Matching), which guides clients training models by two mechanisms. They are 1) a Retain-Expansion mechanism that can let clients perform local training and extract data characteristics automatically during the training and 2) a Matching mechanism that can ensure new clients quickly adapt to the global model based on matching their data characteristics and adjusting the model accordingly. Results of extensive experiments verify that our FedREM outperforms various baselines in terms of model accuracy, communication efficiency, and system robustness.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10521537/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10521537/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
FedREM: Guided Federated Learning in the Presence of Dynamic Device Unpredictability
Federated learning (FL) is a promising distributed machine learning scheme where multiple clients collaborate by sharing a common learning model while maintaining their private data locally. It can be applied to a lot of applications, e.g., training an automatic driving system by the perception of multiple vehicles. However, some clients may join the training system dynamically, which affects the stability and accuracy of the learning system a IoT. Meanwhile, data heterogeneity in the FL system exacerbates the above problem further due to imbalanced data distribution. To solve the above problems, we propose a novel FL framework named FedREM (Retain-Expansion and Matching), which guides clients training models by two mechanisms. They are 1) a Retain-Expansion mechanism that can let clients perform local training and extract data characteristics automatically during the training and 2) a Matching mechanism that can ensure new clients quickly adapt to the global model based on matching their data characteristics and adjusting the model accordingly. Results of extensive experiments verify that our FedREM outperforms various baselines in terms of model accuracy, communication efficiency, and system robustness.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.