用于约束性多目标优化的远离步骤弗兰克-沃尔夫算法

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Douglas S. Gonçalves, Max L. N. Gonçalves, Jefferson G. Melo
{"title":"用于约束性多目标优化的远离步骤弗兰克-沃尔夫算法","authors":"Douglas S. Gonçalves, Max L. N. Gonçalves, Jefferson G. Melo","doi":"10.1007/s10589-024-00577-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose and analyze an <i>away-step</i> Frank–Wolfe algorithm designed for solving multiobjective optimization problems over polytopes. We prove that each limit point of the sequence generated by the algorithm is a weak Pareto optimal solution. Furthermore, under additional conditions, we show linear convergence of the whole sequence to a Pareto optimal solution. Numerical examples illustrate a promising performance of the proposed algorithm in problems where the multiobjective Frank–Wolfe convergence rate is only sublinear.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"65 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An away-step Frank–Wolfe algorithm for constrained multiobjective optimization\",\"authors\":\"Douglas S. Gonçalves, Max L. N. Gonçalves, Jefferson G. Melo\",\"doi\":\"10.1007/s10589-024-00577-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose and analyze an <i>away-step</i> Frank–Wolfe algorithm designed for solving multiobjective optimization problems over polytopes. We prove that each limit point of the sequence generated by the algorithm is a weak Pareto optimal solution. Furthermore, under additional conditions, we show linear convergence of the whole sequence to a Pareto optimal solution. Numerical examples illustrate a promising performance of the proposed algorithm in problems where the multiobjective Frank–Wolfe convergence rate is only sublinear.</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00577-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00577-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出并分析了一种专为解决多边形上的多目标优化问题而设计的分步 Frank-Wolfe 算法。我们证明了该算法生成的序列的每个极限点都是弱帕累托最优解。此外,在附加条件下,我们还证明了整个序列对帕累托最优解的线性收敛性。数值示例表明,在多目标 Frank-Wolfe 收敛率仅为亚线性的问题中,所提出的算法表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An away-step Frank–Wolfe algorithm for constrained multiobjective optimization

An away-step Frank–Wolfe algorithm for constrained multiobjective optimization

In this paper, we propose and analyze an away-step Frank–Wolfe algorithm designed for solving multiobjective optimization problems over polytopes. We prove that each limit point of the sequence generated by the algorithm is a weak Pareto optimal solution. Furthermore, under additional conditions, we show linear convergence of the whole sequence to a Pareto optimal solution. Numerical examples illustrate a promising performance of the proposed algorithm in problems where the multiobjective Frank–Wolfe convergence rate is only sublinear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
9.10%
发文量
91
审稿时长
10 months
期刊介绍: Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome. Topics of interest include, but are not limited to the following: Large Scale Optimization, Unconstrained Optimization, Linear Programming, Quadratic Programming Complementarity Problems, and Variational Inequalities, Constrained Optimization, Nondifferentiable Optimization, Integer Programming, Combinatorial Optimization, Stochastic Optimization, Multiobjective Optimization, Network Optimization, Complexity Theory, Approximations and Error Analysis, Parametric Programming and Sensitivity Analysis, Parallel Computing, Distributed Computing, and Vector Processing, Software, Benchmarks, Numerical Experimentation and Comparisons, Modelling Languages and Systems for Optimization, Automatic Differentiation, Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research, Transportation, Economics, Communications, Manufacturing, and Management Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信