E-univexity 条件下分数程序设计问题的最优性和对偶性结果

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
S. K. Mishra, D. Singh, Pankaj
{"title":"E-univexity 条件下分数程序设计问题的最优性和对偶性结果","authors":"S. K. Mishra, D. Singh, Pankaj","doi":"10.1007/s11075-024-01840-w","DOIUrl":null,"url":null,"abstract":"<p>In this article, we deal with nonconvex fractional programming problems involving E-differentiable functions <span>\\((FP_E)\\)</span>. The so-called E-Karush-Kuhn-Tucker sufficient E-optimality conditions are established for nonsmooth optimization problems under E-univexity hypothesis. The established optimality conditions are explained with a numerical example. The so-called vector dual problem in the sense of Schaible <span>\\((SD_E)\\)</span> involves E-differentiable functions for <span>\\((FP_E)\\)</span> is defined under E-univexity hypothesis.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"2013 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality and duality results for fractional programming problems under E-univexity\",\"authors\":\"S. K. Mishra, D. Singh, Pankaj\",\"doi\":\"10.1007/s11075-024-01840-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we deal with nonconvex fractional programming problems involving E-differentiable functions <span>\\\\((FP_E)\\\\)</span>. The so-called E-Karush-Kuhn-Tucker sufficient E-optimality conditions are established for nonsmooth optimization problems under E-univexity hypothesis. The established optimality conditions are explained with a numerical example. The so-called vector dual problem in the sense of Schaible <span>\\\\((SD_E)\\\\)</span> involves E-differentiable functions for <span>\\\\((FP_E)\\\\)</span> is defined under E-univexity hypothesis.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01840-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01840-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了涉及 E 可变函数 \((FP_E)\) 的非凸分式编程问题。针对 E-univexity 假设下的非光滑优化问题,我们建立了所谓的 E-Karush-Kuhn-Tucker 充分 E-optimality 条件。通过一个数值实例解释了所建立的最优性条件。在 E-univexity 假设下,定义了 Schaible 意义上的所谓矢量对偶问题((SD_E)\),该问题涉及 E-ifferentiable functions for \((FP_E)\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimality and duality results for fractional programming problems under E-univexity

In this article, we deal with nonconvex fractional programming problems involving E-differentiable functions \((FP_E)\). The so-called E-Karush-Kuhn-Tucker sufficient E-optimality conditions are established for nonsmooth optimization problems under E-univexity hypothesis. The established optimality conditions are explained with a numerical example. The so-called vector dual problem in the sense of Schaible \((SD_E)\) involves E-differentiable functions for \((FP_E)\) is defined under E-univexity hypothesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信