S. I. Ashitkov, E. V. Struleva, P. S. Komarov, S. A. Evlashin
{"title":"超短激光脉冲冲击下的钼冲击压缩","authors":"S. I. Ashitkov, E. V. Struleva, P. S. Komarov, S. A. Evlashin","doi":"10.1134/s0018151x23050012","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The behavior of molybdenum under the action of load pulses of picosecond duration is studied in an experiment. Using the method of spectral interferometry in the single-exposure mode in the picosecond range, changes in the phase and amplitude of the diagnostic pulse reflected from the free surface of the sample are recorded. In a film sample of molybdenum of submicron thickness, compressive stresses reaching 89 GPa are realized and are accompanied by a significant increase in the surface reflectance.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shock Compression of Molybdenum under Impact of Ultrashort Laser Pulses\",\"authors\":\"S. I. Ashitkov, E. V. Struleva, P. S. Komarov, S. A. Evlashin\",\"doi\":\"10.1134/s0018151x23050012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The behavior of molybdenum under the action of load pulses of picosecond duration is studied in an experiment. Using the method of spectral interferometry in the single-exposure mode in the picosecond range, changes in the phase and amplitude of the diagnostic pulse reflected from the free surface of the sample are recorded. In a film sample of molybdenum of submicron thickness, compressive stresses reaching 89 GPa are realized and are accompanied by a significant increase in the surface reflectance.</p>\",\"PeriodicalId\":13163,\"journal\":{\"name\":\"High Temperature\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018151x23050012\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23050012","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Shock Compression of Molybdenum under Impact of Ultrashort Laser Pulses
Abstract
The behavior of molybdenum under the action of load pulses of picosecond duration is studied in an experiment. Using the method of spectral interferometry in the single-exposure mode in the picosecond range, changes in the phase and amplitude of the diagnostic pulse reflected from the free surface of the sample are recorded. In a film sample of molybdenum of submicron thickness, compressive stresses reaching 89 GPa are realized and are accompanied by a significant increase in the surface reflectance.
期刊介绍:
High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.