连立逻辑和双推理多网格逻辑的代数完备性

IF 0.7 3区 数学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yaroslav Petrukhin
{"title":"连立逻辑和双推理多网格逻辑的代数完备性","authors":"Yaroslav Petrukhin","doi":"10.1007/s10849-024-09415-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce the notions of connexive and bi-intuitionistic multilattices and develop on their base the algebraic semantics for Kamide, Shramko, and Wansing’s connexive and bi-intuitionistic multilattice logics which were previously known in the form of sequent calculi and Kripke semantics. We prove that these logics are sound and complete with respect to the presented algebraic structures.</p>","PeriodicalId":48732,"journal":{"name":"Journal of Logic Language and Information","volume":"4 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic Completeness of Connexive and Bi-Intuitionistic Multilattice Logics\",\"authors\":\"Yaroslav Petrukhin\",\"doi\":\"10.1007/s10849-024-09415-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we introduce the notions of connexive and bi-intuitionistic multilattices and develop on their base the algebraic semantics for Kamide, Shramko, and Wansing’s connexive and bi-intuitionistic multilattice logics which were previously known in the form of sequent calculi and Kripke semantics. We prove that these logics are sound and complete with respect to the presented algebraic structures.</p>\",\"PeriodicalId\":48732,\"journal\":{\"name\":\"Journal of Logic Language and Information\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Logic Language and Information\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10849-024-09415-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logic Language and Information","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10849-024-09415-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了连生多格法和双直觉多格法的概念,并在其基础上发展了 Kamide、Shramko 和 Wansing 的连生多格法和双直觉多格法逻辑的代数语义,这些逻辑以前是以序列计算和克里普克语义的形式为人所知的。我们证明这些逻辑在所提出的代数结构方面是健全和完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Algebraic Completeness of Connexive and Bi-Intuitionistic Multilattice Logics

Algebraic Completeness of Connexive and Bi-Intuitionistic Multilattice Logics

In this paper, we introduce the notions of connexive and bi-intuitionistic multilattices and develop on their base the algebraic semantics for Kamide, Shramko, and Wansing’s connexive and bi-intuitionistic multilattice logics which were previously known in the form of sequent calculi and Kripke semantics. We prove that these logics are sound and complete with respect to the presented algebraic structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Logic Language and Information
Journal of Logic Language and Information COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEL-LOGIC
CiteScore
1.70
自引率
12.50%
发文量
40
期刊介绍: The scope of the journal is the logical and computational foundations of natural, formal, and programming languages, as well as the different forms of human and mechanized inference. It covers the logical, linguistic, and information-theoretic parts of the cognitive sciences. Examples of main subareas are Intentional Logics including Dynamic Logic; Nonmonotonic Logic and Belief Revision; Constructive Logics; Complexity Issues in Logic and Linguistics; Theoretical Problems of Logic Programming and Resolution; Categorial Grammar and Type Theory; Generalized Quantification; Information-Oriented Theories of Semantic Structure like Situation Semantics, Discourse Representation Theory, and Dynamic Semantics; Connectionist Models of Logical and Linguistic Structures. The emphasis is on the theoretical aspects of these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信