利用基于知识的流程片段重用技术实现智能环境中的可配置工作流程

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mouhamed Gaith Ayadi, Haithem Mezni
{"title":"利用基于知识的流程片段重用技术实现智能环境中的可配置工作流程","authors":"Mouhamed Gaith Ayadi, Haithem Mezni","doi":"10.1007/s10723-024-09763-5","DOIUrl":null,"url":null,"abstract":"<p>In today’s smart environments, the serviceli-zation of various resources has produced a tremendous number of IoT- and cloud-based smart services. Thanks to the pivotal role of pillar paradigms, such as edge/cloud computing, Internet of Things, and business process management, it is now possible to combine and translate these service-like resources into configurable workflows, to cope with users’ complex needs. Examples include treatment workflows in smart healthcare, delivery plans in drone-based missions, transportation plans in smart urban networks, etc. Rather than composing atomic services to obtain these workflows, reusing existing process fragments has several advantages, mainly the fast, secure, and configurable compositions. However, reusing smart process fragments has not yet been addressed in the context of smart environments. In addition, existing solutions in smart environments suffer from the complexity (e.g., multi-modal transportation in smart mobility) and privacy issues caused by the heterogeneity (e.g., package delivery in smart economy) of aggregated services. Moreover, these services may be conflicting in specific domains (e.g. medication/treatment workflows in smart healthcare), and may affect user experience. To solve the above issues, the present paper aims to accelerate the process of generating configurable treatment workflows w.r.t. the users’ requirements and their smart environment specificity. We exploit the principles of software reuse to map each sub-request into smart process fragments, which we combine using Cocke-Kasami-Younger (CKY) method, to finally obtain the suitable workflow. This contribution is preceded by a knowledge graph modeling of smart environments in terms of available services, process fragments, as well as their dependencies. The built information network is, then, managed using a graph representation learning method, in order to facilitate its processing and composing high-quality smart services. Experimental results on a real-world dataset proved the effectiveness of our approach, compared to existing solutions.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"5 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling Configurable Workflows in Smart Environments with Knowledge-based Process Fragment Reuse\",\"authors\":\"Mouhamed Gaith Ayadi, Haithem Mezni\",\"doi\":\"10.1007/s10723-024-09763-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In today’s smart environments, the serviceli-zation of various resources has produced a tremendous number of IoT- and cloud-based smart services. Thanks to the pivotal role of pillar paradigms, such as edge/cloud computing, Internet of Things, and business process management, it is now possible to combine and translate these service-like resources into configurable workflows, to cope with users’ complex needs. Examples include treatment workflows in smart healthcare, delivery plans in drone-based missions, transportation plans in smart urban networks, etc. Rather than composing atomic services to obtain these workflows, reusing existing process fragments has several advantages, mainly the fast, secure, and configurable compositions. However, reusing smart process fragments has not yet been addressed in the context of smart environments. In addition, existing solutions in smart environments suffer from the complexity (e.g., multi-modal transportation in smart mobility) and privacy issues caused by the heterogeneity (e.g., package delivery in smart economy) of aggregated services. Moreover, these services may be conflicting in specific domains (e.g. medication/treatment workflows in smart healthcare), and may affect user experience. To solve the above issues, the present paper aims to accelerate the process of generating configurable treatment workflows w.r.t. the users’ requirements and their smart environment specificity. We exploit the principles of software reuse to map each sub-request into smart process fragments, which we combine using Cocke-Kasami-Younger (CKY) method, to finally obtain the suitable workflow. This contribution is preceded by a knowledge graph modeling of smart environments in terms of available services, process fragments, as well as their dependencies. The built information network is, then, managed using a graph representation learning method, in order to facilitate its processing and composing high-quality smart services. Experimental results on a real-world dataset proved the effectiveness of our approach, compared to existing solutions.</p>\",\"PeriodicalId\":54817,\"journal\":{\"name\":\"Journal of Grid Computing\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Grid Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-024-09763-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09763-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在当今的智能环境中,各种资源的服务化产生了大量基于物联网和云的智能服务。得益于边缘/云计算、物联网和业务流程管理等支柱范式的关键作用,现在有可能将这些类似服务的资源组合并转化为可配置的工作流,以满足用户的复杂需求。例如,智能医疗中的治疗工作流、无人机任务中的交付计划、智能城市网络中的交通计划等。与组合原子服务来获取这些工作流相比,重用现有的流程片段有几个优势,主要是组合快速、安全和可配置。然而,在智能环境中重新使用智能流程片段的问题尚未得到解决。此外,智能环境中的现有解决方案还受到聚合服务的复杂性(如智能交通中的多模式交通)和异构性(如智能经济中的包裹递送)造成的隐私问题的影响。此外,这些服务在特定领域(如智能医疗中的用药/治疗工作流)中可能存在冲突,并可能影响用户体验。为解决上述问题,本文旨在根据用户需求及其智能环境的特殊性,加快生成可配置治疗工作流的过程。我们利用软件重用原则,将每个子请求映射为智能流程片段,并使用 Cocke-Kasamii-Younger (CKY) 方法将这些片段组合起来,最终获得合适的工作流程。在完成这项工作之前,我们首先从可用服务、流程片段及其依赖关系的角度对智能环境进行了知识图谱建模。然后,利用图表示学习方法对所构建的信息网络进行管理,以促进其处理和组成高质量的智能服务。在现实世界数据集上的实验结果证明,与现有解决方案相比,我们的方法非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling Configurable Workflows in Smart Environments with Knowledge-based Process Fragment Reuse

In today’s smart environments, the serviceli-zation of various resources has produced a tremendous number of IoT- and cloud-based smart services. Thanks to the pivotal role of pillar paradigms, such as edge/cloud computing, Internet of Things, and business process management, it is now possible to combine and translate these service-like resources into configurable workflows, to cope with users’ complex needs. Examples include treatment workflows in smart healthcare, delivery plans in drone-based missions, transportation plans in smart urban networks, etc. Rather than composing atomic services to obtain these workflows, reusing existing process fragments has several advantages, mainly the fast, secure, and configurable compositions. However, reusing smart process fragments has not yet been addressed in the context of smart environments. In addition, existing solutions in smart environments suffer from the complexity (e.g., multi-modal transportation in smart mobility) and privacy issues caused by the heterogeneity (e.g., package delivery in smart economy) of aggregated services. Moreover, these services may be conflicting in specific domains (e.g. medication/treatment workflows in smart healthcare), and may affect user experience. To solve the above issues, the present paper aims to accelerate the process of generating configurable treatment workflows w.r.t. the users’ requirements and their smart environment specificity. We exploit the principles of software reuse to map each sub-request into smart process fragments, which we combine using Cocke-Kasami-Younger (CKY) method, to finally obtain the suitable workflow. This contribution is preceded by a knowledge graph modeling of smart environments in terms of available services, process fragments, as well as their dependencies. The built information network is, then, managed using a graph representation learning method, in order to facilitate its processing and composing high-quality smart services. Experimental results on a real-world dataset proved the effectiveness of our approach, compared to existing solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Grid Computing
Journal of Grid Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
8.70
自引率
9.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures. Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信