具有 p 拉普拉卡矩的完美传导性问题解的渐近性

IF 1.3 2区 数学 Q1 MATHEMATICS
Hongjie Dong, Zhuolun Yang, Hanye Zhu
{"title":"具有 p 拉普拉卡矩的完美传导性问题解的渐近性","authors":"Hongjie Dong, Zhuolun Yang, Hanye Zhu","doi":"10.1007/s00208-024-02876-y","DOIUrl":null,"url":null,"abstract":"<p>We study the perfect conductivity problem with closely spaced perfect conductors embedded in a homogeneous matrix where the current-electric field relation is the power law <span>\\(J=\\sigma |E|^{p-2}E\\)</span>. The gradient of solutions may be arbitrarily large as <span>\\(\\varepsilon \\)</span>, the distance between inclusions, approaches to 0. To characterize this singular behavior of the gradient in the narrow region between two inclusions, we capture the leading order term of the gradient. This is the first gradient asymptotics result on the nonlinear perfect conductivity problem.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"116 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of the solution to the perfect conductivity problem with p-Laplacian\",\"authors\":\"Hongjie Dong, Zhuolun Yang, Hanye Zhu\",\"doi\":\"10.1007/s00208-024-02876-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the perfect conductivity problem with closely spaced perfect conductors embedded in a homogeneous matrix where the current-electric field relation is the power law <span>\\\\(J=\\\\sigma |E|^{p-2}E\\\\)</span>. The gradient of solutions may be arbitrarily large as <span>\\\\(\\\\varepsilon \\\\)</span>, the distance between inclusions, approaches to 0. To characterize this singular behavior of the gradient in the narrow region between two inclusions, we capture the leading order term of the gradient. This is the first gradient asymptotics result on the nonlinear perfect conductivity problem.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02876-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02876-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是完美导体嵌入同质矩阵中的完美导体问题,其中电流-电场关系为幂律 \(J=\sigma|E|^{p-2}E\)。当夹杂物之间的距离(\(\varepsilon \))趋近于 0 时,解的梯度可以任意大。这是关于非线性完全导电性问题的第一个梯度渐近学结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotics of the solution to the perfect conductivity problem with p-Laplacian

Asymptotics of the solution to the perfect conductivity problem with p-Laplacian

We study the perfect conductivity problem with closely spaced perfect conductors embedded in a homogeneous matrix where the current-electric field relation is the power law \(J=\sigma |E|^{p-2}E\). The gradient of solutions may be arbitrarily large as \(\varepsilon \), the distance between inclusions, approaches to 0. To characterize this singular behavior of the gradient in the narrow region between two inclusions, we capture the leading order term of the gradient. This is the first gradient asymptotics result on the nonlinear perfect conductivity problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信