{"title":"时间逼近的艺术:对经济学中离散和连续时间问题数值解决方案的研究","authors":"Keyvan Eslami, Thomas Phelan","doi":"10.1007/s10614-024-10596-3","DOIUrl":null,"url":null,"abstract":"<p>A recent literature within quantitative macroeconomics has advocated the use of continuous-time methods for dynamic programming problems. In this paper we explore the relative merits of continuous-time and discrete-time methods within the context of stationary and nonstationary income fluctuation problems. For stationary problems in two dimensions, the continuous-time approach is both more stable and typically faster than the discrete-time approach for any given level of accuracy. In contrast, for concave lifecycle problems (in which age or time enters explicitly), simply iterating backwards from the terminal date in discrete time is superior to any continuous-time algorithm. However, we also show that the continuous-time framework can easily incorporate nonconvexities and multiple controls—complications that often require either problem-specific ingenuity or nonlinear root-finding in the discrete-time context. In general, neither approach unequivocally dominates the other, making the choice of one over the other an art, rather than an exact science.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"33 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Art of Temporal Approximation: An Investigation into Numerical Solutions to Discrete- and Continuous-Time Problems in Economics\",\"authors\":\"Keyvan Eslami, Thomas Phelan\",\"doi\":\"10.1007/s10614-024-10596-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A recent literature within quantitative macroeconomics has advocated the use of continuous-time methods for dynamic programming problems. In this paper we explore the relative merits of continuous-time and discrete-time methods within the context of stationary and nonstationary income fluctuation problems. For stationary problems in two dimensions, the continuous-time approach is both more stable and typically faster than the discrete-time approach for any given level of accuracy. In contrast, for concave lifecycle problems (in which age or time enters explicitly), simply iterating backwards from the terminal date in discrete time is superior to any continuous-time algorithm. However, we also show that the continuous-time framework can easily incorporate nonconvexities and multiple controls—complications that often require either problem-specific ingenuity or nonlinear root-finding in the discrete-time context. In general, neither approach unequivocally dominates the other, making the choice of one over the other an art, rather than an exact science.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10596-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10596-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Art of Temporal Approximation: An Investigation into Numerical Solutions to Discrete- and Continuous-Time Problems in Economics
A recent literature within quantitative macroeconomics has advocated the use of continuous-time methods for dynamic programming problems. In this paper we explore the relative merits of continuous-time and discrete-time methods within the context of stationary and nonstationary income fluctuation problems. For stationary problems in two dimensions, the continuous-time approach is both more stable and typically faster than the discrete-time approach for any given level of accuracy. In contrast, for concave lifecycle problems (in which age or time enters explicitly), simply iterating backwards from the terminal date in discrete time is superior to any continuous-time algorithm. However, we also show that the continuous-time framework can easily incorporate nonconvexities and multiple controls—complications that often require either problem-specific ingenuity or nonlinear root-finding in the discrete-time context. In general, neither approach unequivocally dominates the other, making the choice of one over the other an art, rather than an exact science.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.