Greymodels:R 中灰色预测模型的闪亮软件包

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Havisha Jahajeeah, Aslam A. E. F. Saib
{"title":"Greymodels:R 中灰色预测模型的闪亮软件包","authors":"Havisha Jahajeeah, Aslam A. E. F. Saib","doi":"10.1007/s10614-024-10610-8","DOIUrl":null,"url":null,"abstract":"<p>The <span>Greymodels</span> package presents an interactive interface in R for the statistical modelling and forecasting of incomplete or small datasets using grey models. The package, based on the <span>Shiny</span> framework, has been designed to work with univariate and multivariate datasets having different properties and characteristics. The functionality of the package is demonstrated with a few examples and in particular, the user-friendly interface is shown to allow users to easily compare the performance of different models for prediction and among others, visualize graphical plots of predicted values within a user chosen confidence interval. The built-in algorithms in the <span>Greymodels</span> package are extensions or hybrids of the GM<span>\\((1,\\,1)\\)</span> model, and this article covers an overview of the theoretical background of the basic grey model and we also propose a PSO-GM<span>\\((1,\\,1)\\)</span> algorithm in this package.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"2 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greymodels: A Shiny Package for Grey Forecasting Models in R\",\"authors\":\"Havisha Jahajeeah, Aslam A. E. F. Saib\",\"doi\":\"10.1007/s10614-024-10610-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <span>Greymodels</span> package presents an interactive interface in R for the statistical modelling and forecasting of incomplete or small datasets using grey models. The package, based on the <span>Shiny</span> framework, has been designed to work with univariate and multivariate datasets having different properties and characteristics. The functionality of the package is demonstrated with a few examples and in particular, the user-friendly interface is shown to allow users to easily compare the performance of different models for prediction and among others, visualize graphical plots of predicted values within a user chosen confidence interval. The built-in algorithms in the <span>Greymodels</span> package are extensions or hybrids of the GM<span>\\\\((1,\\\\,1)\\\\)</span> model, and this article covers an overview of the theoretical background of the basic grey model and we also propose a PSO-GM<span>\\\\((1,\\\\,1)\\\\)</span> algorithm in this package.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10610-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10610-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Greymodels 软件包为使用灰色模型对不完整或小型数据集进行统计建模和预测提供了一个 R 语言交互界面。该软件包基于 Shiny 框架,设计用于处理具有不同属性和特征的单变量和多变量数据集。该软件包的功能通过几个示例进行了演示,尤其是用户友好界面的展示,让用户可以轻松比较不同预测模型的性能,并在用户选择的置信区间内可视化预测值的图形图表。Greymodels软件包中的内置算法是GM/((1,\,1)\)模型的扩展或混合,本文概述了基本灰色模型的理论背景,我们还提出了该软件包中的PSO-GM/((1,\,1)\)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Greymodels: A Shiny Package for Grey Forecasting Models in R

Greymodels: A Shiny Package for Grey Forecasting Models in R

The Greymodels package presents an interactive interface in R for the statistical modelling and forecasting of incomplete or small datasets using grey models. The package, based on the Shiny framework, has been designed to work with univariate and multivariate datasets having different properties and characteristics. The functionality of the package is demonstrated with a few examples and in particular, the user-friendly interface is shown to allow users to easily compare the performance of different models for prediction and among others, visualize graphical plots of predicted values within a user chosen confidence interval. The built-in algorithms in the Greymodels package are extensions or hybrids of the GM\((1,\,1)\) model, and this article covers an overview of the theoretical background of the basic grey model and we also propose a PSO-GM\((1,\,1)\) algorithm in this package.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信