论通过惩罚法解决全 $$\mathbb {R}^N$ 中一类椭圆问题的多重归一化解的存在性

IF 1 3区 数学 Q1 MATHEMATICS
Claudianor O. Alves, Nguyen Van Thin
{"title":"论通过惩罚法解决全 $$\\mathbb {R}^N$ 中一类椭圆问题的多重归一化解的存在性","authors":"Claudianor O. Alves, Nguyen Van Thin","doi":"10.1007/s11118-023-10116-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the existence of multiple normalized solutions to the following class of elliptic problems </p><span>$$\\begin{aligned} \\left\\{ \\begin{aligned}&amp;-\\epsilon ^2\\Delta u+V(x)u=\\lambda u+f(u), \\quad \\quad \\text {in }\\mathbb {R}^N,\\\\&amp;\\int _{\\mathbb {R}^{N}}|u|^{2}dx=a^{2}\\epsilon ^N, \\end{aligned} \\right. \\end{aligned}$$</span><p>where <span>\\(a,\\epsilon &gt;0\\)</span>, <span>\\(\\lambda \\in \\mathbb {R}\\)</span> is an unknown parameter that appears as a Lagrange multiplier, <span>\\(V:\\mathbb {R}^N \\rightarrow [0,\\infty )\\)</span> is a continuous function, and <i>f</i> is a continuous function with <span>\\(L^2\\)</span>-subcritical growth. It is proved that the number of normalized solutions is related to the topological richness of the set where the potential <i>V</i> attains its minimum value. In the proof of our main result, we apply minimization techniques, Lusternik-Schnirelmann category and the penalization method due to del Pino and Felmer (Calc. Var. Partial Differential Equations <b>4</b>, 121–137 1996).</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Existence of Multiple Normalized Solutions to a Class of Elliptic Problems in Whole $$\\\\mathbb {R}^N$$ Via Penalization Method\",\"authors\":\"Claudianor O. Alves, Nguyen Van Thin\",\"doi\":\"10.1007/s11118-023-10116-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the existence of multiple normalized solutions to the following class of elliptic problems </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{aligned}&amp;-\\\\epsilon ^2\\\\Delta u+V(x)u=\\\\lambda u+f(u), \\\\quad \\\\quad \\\\text {in }\\\\mathbb {R}^N,\\\\\\\\&amp;\\\\int _{\\\\mathbb {R}^{N}}|u|^{2}dx=a^{2}\\\\epsilon ^N, \\\\end{aligned} \\\\right. \\\\end{aligned}$$</span><p>where <span>\\\\(a,\\\\epsilon &gt;0\\\\)</span>, <span>\\\\(\\\\lambda \\\\in \\\\mathbb {R}\\\\)</span> is an unknown parameter that appears as a Lagrange multiplier, <span>\\\\(V:\\\\mathbb {R}^N \\\\rightarrow [0,\\\\infty )\\\\)</span> is a continuous function, and <i>f</i> is a continuous function with <span>\\\\(L^2\\\\)</span>-subcritical growth. It is proved that the number of normalized solutions is related to the topological richness of the set where the potential <i>V</i> attains its minimum value. In the proof of our main result, we apply minimization techniques, Lusternik-Schnirelmann category and the penalization method due to del Pino and Felmer (Calc. Var. Partial Differential Equations <b>4</b>, 121–137 1996).</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-023-10116-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-023-10116-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以下一类椭圆问题的多重归一化解的存在性 $$\begin{aligned}&-\epsilon ^2\Delta u+V(x)u=\lambda u+f(u)\Left\{ \begin{aligned}&-\epsilon ^2\Delta u+V(x)u=\lambda u+f(u), \quad \quad \text {in }\mathbb {R}^N,\&\int _\{mathbb {R}^{N}}|u|^{2}dx=a^{2}\epsilon ^N, \end{aligned}.\对\end{aligned}$ 其中\(a,epsilon >0\), \(\lambda \in \mathbb {R}\)是一个作为拉格朗日乘数出现的未知参数,\(V:\mathbb {R}^N \rightarrow [0,\infty )\) 是一个连续函数,f是一个具有\(L^2\)-次临界增长的连续函数。证明归一化解的数量与势 V 达到最小值的集合的拓扑丰富度有关。在证明我们的主要结果时,我们应用了最小化技术、Lusternik-Schnirelmann 范畴以及 del Pino 和 Felmer 的惩罚法(Calc. Var. Partial Differential Equations 4, 121-137 1996)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Existence of Multiple Normalized Solutions to a Class of Elliptic Problems in Whole $$\mathbb {R}^N$$ Via Penalization Method

In this paper we study the existence of multiple normalized solutions to the following class of elliptic problems

$$\begin{aligned} \left\{ \begin{aligned}&-\epsilon ^2\Delta u+V(x)u=\lambda u+f(u), \quad \quad \text {in }\mathbb {R}^N,\\&\int _{\mathbb {R}^{N}}|u|^{2}dx=a^{2}\epsilon ^N, \end{aligned} \right. \end{aligned}$$

where \(a,\epsilon >0\), \(\lambda \in \mathbb {R}\) is an unknown parameter that appears as a Lagrange multiplier, \(V:\mathbb {R}^N \rightarrow [0,\infty )\) is a continuous function, and f is a continuous function with \(L^2\)-subcritical growth. It is proved that the number of normalized solutions is related to the topological richness of the set where the potential V attains its minimum value. In the proof of our main result, we apply minimization techniques, Lusternik-Schnirelmann category and the penalization method due to del Pino and Felmer (Calc. Var. Partial Differential Equations 4, 121–137 1996).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信