N. A. Maleev, A. G. Kuzmenkov, M. M. Kulagina, A. P. Vasyl’ev, S. A. Blokhin, S. I. Troshkov, A. V. Nashchekin, M. A. Bobrov, A. A. Blokhin, K. O. Voropaev, V. E. Bugrov, V. M. Ustinov
{"title":"用于 InAlAs-InGaAs 雪崩光电二极管的蘑菇状 Mesa 结构","authors":"N. A. Maleev, A. G. Kuzmenkov, M. M. Kulagina, A. P. Vasyl’ev, S. A. Blokhin, S. I. Troshkov, A. V. Nashchekin, M. A. Bobrov, A. A. Blokhin, K. O. Voropaev, V. E. Bugrov, V. M. Ustinov","doi":"10.1134/s1063785023900819","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Mushroom mesa structure for InAlAs/InGaAs avalanche photodiodes (APD) was proposed and investigated. APD heterostructrures were grown by molecular-beam epitaxy. Fabricated APDs with the sensitive area diameter of about 30 micron were passivated by SiN deposition and demonstrated avalanche breakdown voltage <i>V</i><sub>br</sub> 70–80 V. At the applied bias of 0.9 <i>V</i><sub>br</sub>, the dark current was 75–200 nA. The single-mode coupled APDs demonstrated responsivity at a gain of unity higher than 0.5 A/W at 1550 nm.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mushroom Mesa Structure for InAlAs–InGaAs Avalanche Photodiodes\",\"authors\":\"N. A. Maleev, A. G. Kuzmenkov, M. M. Kulagina, A. P. Vasyl’ev, S. A. Blokhin, S. I. Troshkov, A. V. Nashchekin, M. A. Bobrov, A. A. Blokhin, K. O. Voropaev, V. E. Bugrov, V. M. Ustinov\",\"doi\":\"10.1134/s1063785023900819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Mushroom mesa structure for InAlAs/InGaAs avalanche photodiodes (APD) was proposed and investigated. APD heterostructrures were grown by molecular-beam epitaxy. Fabricated APDs with the sensitive area diameter of about 30 micron were passivated by SiN deposition and demonstrated avalanche breakdown voltage <i>V</i><sub>br</sub> 70–80 V. At the applied bias of 0.9 <i>V</i><sub>br</sub>, the dark current was 75–200 nA. The single-mode coupled APDs demonstrated responsivity at a gain of unity higher than 0.5 A/W at 1550 nm.</p>\",\"PeriodicalId\":784,\"journal\":{\"name\":\"Technical Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063785023900819\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023900819","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Mushroom Mesa Structure for InAlAs–InGaAs Avalanche Photodiodes
Abstract
Mushroom mesa structure for InAlAs/InGaAs avalanche photodiodes (APD) was proposed and investigated. APD heterostructrures were grown by molecular-beam epitaxy. Fabricated APDs with the sensitive area diameter of about 30 micron were passivated by SiN deposition and demonstrated avalanche breakdown voltage Vbr 70–80 V. At the applied bias of 0.9 Vbr, the dark current was 75–200 nA. The single-mode coupled APDs demonstrated responsivity at a gain of unity higher than 0.5 A/W at 1550 nm.
期刊介绍:
Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.