{"title":"半平面上具有非线性诺伊曼边界条件的薛定谔方程的初始边界值问题","authors":"Takayoshi Ogawa, Takuya Sato, Shun Tsuhara","doi":"10.1007/s00030-024-00943-6","DOIUrl":null,"url":null,"abstract":"<p>We consider the initial-boundary value problem of the nonlinear Schrödinger equation on the half plane with a nonlinear Neumann boundary condition. After establishing the boundary Strichartz estimate in <span>\\(L^2({\\mathbb {R}}^2_+)\\)</span> and <span>\\(H^s({\\mathbb {R}}^2_+)\\)</span>, we consider the time local well-posedness of the problem in <span>\\(L^2({\\mathbb {R}}^2_+)\\)</span> and <span>\\(H^s({\\mathbb {R}}^2_+)\\)</span>.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The initial-boundary value problem for the Schrödinger equation with the nonlinear Neumann boundary condition on the half-plane\",\"authors\":\"Takayoshi Ogawa, Takuya Sato, Shun Tsuhara\",\"doi\":\"10.1007/s00030-024-00943-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the initial-boundary value problem of the nonlinear Schrödinger equation on the half plane with a nonlinear Neumann boundary condition. After establishing the boundary Strichartz estimate in <span>\\\\(L^2({\\\\mathbb {R}}^2_+)\\\\)</span> and <span>\\\\(H^s({\\\\mathbb {R}}^2_+)\\\\)</span>, we consider the time local well-posedness of the problem in <span>\\\\(L^2({\\\\mathbb {R}}^2_+)\\\\)</span> and <span>\\\\(H^s({\\\\mathbb {R}}^2_+)\\\\)</span>.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00943-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00943-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The initial-boundary value problem for the Schrödinger equation with the nonlinear Neumann boundary condition on the half-plane
We consider the initial-boundary value problem of the nonlinear Schrödinger equation on the half plane with a nonlinear Neumann boundary condition. After establishing the boundary Strichartz estimate in \(L^2({\mathbb {R}}^2_+)\) and \(H^s({\mathbb {R}}^2_+)\), we consider the time local well-posedness of the problem in \(L^2({\mathbb {R}}^2_+)\) and \(H^s({\mathbb {R}}^2_+)\).