半平面上具有非线性诺伊曼边界条件的薛定谔方程的初始边界值问题

Takayoshi Ogawa, Takuya Sato, Shun Tsuhara
{"title":"半平面上具有非线性诺伊曼边界条件的薛定谔方程的初始边界值问题","authors":"Takayoshi Ogawa, Takuya Sato, Shun Tsuhara","doi":"10.1007/s00030-024-00943-6","DOIUrl":null,"url":null,"abstract":"<p>We consider the initial-boundary value problem of the nonlinear Schrödinger equation on the half plane with a nonlinear Neumann boundary condition. After establishing the boundary Strichartz estimate in <span>\\(L^2({\\mathbb {R}}^2_+)\\)</span> and <span>\\(H^s({\\mathbb {R}}^2_+)\\)</span>, we consider the time local well-posedness of the problem in <span>\\(L^2({\\mathbb {R}}^2_+)\\)</span> and <span>\\(H^s({\\mathbb {R}}^2_+)\\)</span>.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The initial-boundary value problem for the Schrödinger equation with the nonlinear Neumann boundary condition on the half-plane\",\"authors\":\"Takayoshi Ogawa, Takuya Sato, Shun Tsuhara\",\"doi\":\"10.1007/s00030-024-00943-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the initial-boundary value problem of the nonlinear Schrödinger equation on the half plane with a nonlinear Neumann boundary condition. After establishing the boundary Strichartz estimate in <span>\\\\(L^2({\\\\mathbb {R}}^2_+)\\\\)</span> and <span>\\\\(H^s({\\\\mathbb {R}}^2_+)\\\\)</span>, we consider the time local well-posedness of the problem in <span>\\\\(L^2({\\\\mathbb {R}}^2_+)\\\\)</span> and <span>\\\\(H^s({\\\\mathbb {R}}^2_+)\\\\)</span>.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00943-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00943-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是半平面上非线性薛定谔方程的初边界问题,该方程具有非线性诺伊曼边界条件。在建立了 \(L^2({\mathbb {R}}^2_+)\ 和 \(H^s({\mathbb {R}}^2_+)\ 中的边界斯特里查兹估计之后,我们考虑了问题在 \(L^2({\mathbb {R}}^2_+)\) 和 \(H^s({\mathbb {R}}^2_+)\ 中的时间局部好求性。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The initial-boundary value problem for the Schrödinger equation with the nonlinear Neumann boundary condition on the half-plane

We consider the initial-boundary value problem of the nonlinear Schrödinger equation on the half plane with a nonlinear Neumann boundary condition. After establishing the boundary Strichartz estimate in \(L^2({\mathbb {R}}^2_+)\) and \(H^s({\mathbb {R}}^2_+)\), we consider the time local well-posedness of the problem in \(L^2({\mathbb {R}}^2_+)\) and \(H^s({\mathbb {R}}^2_+)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信