关于解决双噪声线性系统的随机卡兹马兹算法的说明

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
El Houcine Bergou, Soumia Boucherouite, Aritra Dutta, Xin Li, Anna Ma
{"title":"关于解决双噪声线性系统的随机卡兹马兹算法的说明","authors":"El Houcine Bergou, Soumia Boucherouite, Aritra Dutta, Xin Li, Anna Ma","doi":"10.1137/23m155712x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 992-1006, June 2024. <br/> Abstract. Large-scale linear systems, [math], frequently arise in practice and demand effective iterative solvers. Often, these systems are noisy due to operational errors or faulty data-collection processes. In the past decade, the randomized Kaczmarz algorithm (RK) has been studied extensively as an efficient iterative solver for such systems. However, the convergence study of RK in the noisy regime is limited and considers measurement noise in the right-hand side vector, [math]. Unfortunately, in practice, that is not always the case; the coefficient matrix [math] can also be noisy. In this paper, we analyze the convergence of RK for doubly noisy linear systems, i.e., when the coefficient matrix, [math], has additive or multiplicative noise, and [math] is also noisy. In our analyses, the quantity [math] influences the convergence of RK, where [math] represents a noisy version of [math]. We claim that our analysis is robust and realistically applicable, as we do not require information about the noiseless coefficient matrix, [math], and by considering different conditions on noise, we can control the convergence of RK. We perform numerical experiments to substantiate our theoretical findings.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on the Randomized Kaczmarz Algorithm for Solving Doubly Noisy Linear Systems\",\"authors\":\"El Houcine Bergou, Soumia Boucherouite, Aritra Dutta, Xin Li, Anna Ma\",\"doi\":\"10.1137/23m155712x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 992-1006, June 2024. <br/> Abstract. Large-scale linear systems, [math], frequently arise in practice and demand effective iterative solvers. Often, these systems are noisy due to operational errors or faulty data-collection processes. In the past decade, the randomized Kaczmarz algorithm (RK) has been studied extensively as an efficient iterative solver for such systems. However, the convergence study of RK in the noisy regime is limited and considers measurement noise in the right-hand side vector, [math]. Unfortunately, in practice, that is not always the case; the coefficient matrix [math] can also be noisy. In this paper, we analyze the convergence of RK for doubly noisy linear systems, i.e., when the coefficient matrix, [math], has additive or multiplicative noise, and [math] is also noisy. In our analyses, the quantity [math] influences the convergence of RK, where [math] represents a noisy version of [math]. We claim that our analysis is robust and realistically applicable, as we do not require information about the noiseless coefficient matrix, [math], and by considering different conditions on noise, we can control the convergence of RK. We perform numerical experiments to substantiate our theoretical findings.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m155712x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m155712x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 矩阵分析与应用期刊》,第 45 卷第 2 期,第 992-1006 页,2024 年 6 月。 摘要。大规模线性系统[math]在实践中经常出现,需要有效的迭代求解器。通常情况下,由于操作失误或数据收集过程有误,这些系统会产生噪声。在过去的十年中,随机 Kaczmarz 算法(RK)作为此类系统的高效迭代求解器得到了广泛的研究。然而,RK 算法在噪声环境下的收敛性研究是有限的,并且考虑了右侧矢量的测量噪声[数学]。遗憾的是,实际情况并非总是如此;系数矩阵 [math] 也可能是有噪声的。在本文中,我们分析了双噪声线性系统的 RK 收敛性,即系数矩阵 [math] 存在加法或乘法噪声,且 [math] 也存在噪声时的收敛性。在我们的分析中,[math] 这个量会影响 RK 的收敛性,其中 [math] 表示 [math] 的噪声版本。我们声称,我们的分析是稳健和现实适用的,因为我们不需要无噪声系数矩阵 [math] 的信息,而且通过考虑噪声的不同条件,我们可以控制 RK 的收敛性。我们进行了数值实验来证实我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on the Randomized Kaczmarz Algorithm for Solving Doubly Noisy Linear Systems
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 992-1006, June 2024.
Abstract. Large-scale linear systems, [math], frequently arise in practice and demand effective iterative solvers. Often, these systems are noisy due to operational errors or faulty data-collection processes. In the past decade, the randomized Kaczmarz algorithm (RK) has been studied extensively as an efficient iterative solver for such systems. However, the convergence study of RK in the noisy regime is limited and considers measurement noise in the right-hand side vector, [math]. Unfortunately, in practice, that is not always the case; the coefficient matrix [math] can also be noisy. In this paper, we analyze the convergence of RK for doubly noisy linear systems, i.e., when the coefficient matrix, [math], has additive or multiplicative noise, and [math] is also noisy. In our analyses, the quantity [math] influences the convergence of RK, where [math] represents a noisy version of [math]. We claim that our analysis is robust and realistically applicable, as we do not require information about the noiseless coefficient matrix, [math], and by considering different conditions on noise, we can control the convergence of RK. We perform numerical experiments to substantiate our theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信