论具有时变系数的畸变抛物方程的基本解和高斯边界

IF 1 3区 数学 Q1 MATHEMATICS
Alireza Ataei, Kaj Nyström
{"title":"论具有时变系数的畸变抛物方程的基本解和高斯边界","authors":"Alireza Ataei, Kaj Nyström","doi":"10.1007/s11118-024-10143-7","DOIUrl":null,"url":null,"abstract":"<p>We consider second order degenerate parabolic equations with real, measurable, and time-dependent coefficients. We allow for degenerate ellipticity dictated by a spatial <span>\\(A_2\\)</span>-weight. We prove the existence of a fundamental solution and derive Gaussian bounds. Our construction is based on the original work of Kato (Nagoya Math. J. <b>19</b>, 93–125 1961).</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"222 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Fundamental Solutions and Gaussian Bounds for Degenerate Parabolic Equations with Time-dependent Coefficients\",\"authors\":\"Alireza Ataei, Kaj Nyström\",\"doi\":\"10.1007/s11118-024-10143-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider second order degenerate parabolic equations with real, measurable, and time-dependent coefficients. We allow for degenerate ellipticity dictated by a spatial <span>\\\\(A_2\\\\)</span>-weight. We prove the existence of a fundamental solution and derive Gaussian bounds. Our construction is based on the original work of Kato (Nagoya Math. J. <b>19</b>, 93–125 1961).</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"222 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10143-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10143-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是二阶退化抛物方程,其系数为实数、可测量且随时间变化。我们允许由空间 \(A_2\)-weight 决定的退化椭圆性。我们证明了基本解的存在,并推导出高斯边界。我们的构造基于加藤(Kato)的原作(名古屋数学杂志 19, 93-125 1961)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Fundamental Solutions and Gaussian Bounds for Degenerate Parabolic Equations with Time-dependent Coefficients

We consider second order degenerate parabolic equations with real, measurable, and time-dependent coefficients. We allow for degenerate ellipticity dictated by a spatial \(A_2\)-weight. We prove the existence of a fundamental solution and derive Gaussian bounds. Our construction is based on the original work of Kato (Nagoya Math. J. 19, 93–125 1961).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信